DOI QR코드

DOI QR Code

Blow-out pressure of tunnels excavated in Hoek-Brown rock masses

  • Alireza Seghateh Mojtahedi (Department of Civil and Environmental Engineering, Amirkabir University of Technology) ;
  • Meysam Imani (Garmsar Campus, Amirkabir University of Technology) ;
  • Ahmad Fahimifar (Department of Civil and Environmental Engineering, Amirkabir University of Technology)
  • Received : 2022.12.07
  • Accepted : 2024.04.25
  • Published : 2024.05.25

Abstract

If the pressure exerted on the face of a tunnel excavated by TBM exceeds a threshold, it leads to failure of the soil or rock masses ahead of the tunnel face, which results in heaving the ground surface. In the current research, the upper bound method of limit analysis was employed to calculate the blow-out pressure of tunnels excavated in rock masses obeying the Hoek-Brown nonlinear criterion. The results of the proposed method were compared with three-dimensional finite element models, as well as the available methods in the literature. The results show that when σci, mi, and GSI increase, the blow-out pressure increases as well. By doubling the tunnel diameter, the blow-out pressure reduces up to 54.6%. Also, by doubling the height of the tunnel cover and the surcharge pressure exerted on the ground surface above the tunnel, the blow-out pressure increased up to 74.9% and 5.4%, respectively. With 35% increase in the unit weight of the rock mass surrounding the tunnel, the blow-out pressure increases in the range of 14.8% to 19.6%. The results of the present study were provided in simple design graphs that can easily be used in practical applications in order to obtain the blow-out pressure.

Keywords

References

  1. AlKhafaji, H., Imani, M. and Fahimifar, A. (2020), "Ultimate bearing capacity of rock mass foundations subjected to seepage forces using modified Hoek-Brown criterion", Rock Mech. Rock Eng., 53, 251-268. https://doi.org/10.1007/s00603-019-01905-6. 
  2. Anagnostou, G. and Kovari, K. (1994), "The face stability of slurry-shield-driven tunnels", Tunn. Undergr. Sp. Tech., 9(2), 165-174. https://doi.org/10.1016/0886-7798(94)90028-0. 
  3. Anagnostou, G. (2012), "The contribution of horizontal arching to tunnel face stability", Geotechnik, 35(1), 34-44. https://doi.org/10.1002/gete.201100024. 
  4. Berthoz, N., Branque, D., Subrin, D., Wong, H. and Humbert, E. (2012)," Face failure in homogeneous and stratified soft ground: Theoretical and experimental approaches on 1g EPBS reduced scale model", Tunn. Undergr. Sp. Tech., 30, 25-37. https://doi.org/10.1016/j.tust.2012.01.005. 
  5. Bezuijen, A. and Brassinga, H.E. (2006), "Blow-out pressures measured in a centrifuge model and in the field", Tunnelling: a decade of progress: GeoDelft 1995-2005, Taylor & Francis Group., London, Part 3, 143-148. 
  6. Broere, W. (2001), "Tunnel face stability and new CPT applications", PhD Thesis, Delf University Press., Delf, Netherlands. 
  7. Broms, B.B. and Bennermark, H. (1967), "Stability of clay at vertical openings", J. Soil Mech. Found Eng., 193(1), 71-94.  https://doi.org/10.1061/JSFEAQ.0000946
  8. Chen, W.F. (1975), Limit Analysis and Soil Plasticity. Elsevier, Vol. 7, Chapter 3, 47-106. 
  9. Davis, E.H., Gunn, M.J., Mair, R.J. and Seneviratne, H.N. (1980), "The stability of shallow tunnels and underground openings in cohesive material", Geotechnique, 30(4), 397-416. https://doi.org/10.1680/geot.1980.30.4.397. 
  10. Guglielmetti, V., Grasso, P., Mahtab, A. and Xu, S. (2008), "Mechanized tunneling in urban areas: Design methodology and construction control", Taylor and Francis Group, Chapter 5, 113-235. 
  11. Han, K., Zhang, C. and Zhang, D. (2016), "Upper-bound solution for the face stability of a shield tunnel in multilayered cohesive-frictional soils", Comput. Geotech., 79, 1-9. https://doi.org/10.1016/j.compgeo.2016.05.018. 
  12. Herrenknecht, M. and Rehm, U. (2002), Newest Development in Mechanized Tunneling. Journees d'etudes Internationales, Toulouse, 201-206. 
  13. Hoek, E., Corranza-Torres, C.T. and Corkum, B. (2002), "Hoek-Brown failure criterion-2002 Edition", Proceedings of the 5th North American rock mechanics symposium, Totonto, Canada.
  14. Hoek, E. and Diederichs, M.S. (2006), "Emprical estimation of rock mass modulus", Int. J. Rock Mech. Min. Sci., 43(2), 203-215. https://doi.org/10.1016/j.ijrmms.2005.06.005. 
  15. Horn, M. (1961), "Horizontal earth pressure on perpendicular tunnel face", Proceedings of the Hungarian National Conference of the Foundation Engineer Industry, Budapest, Hungary, 7-16. 
  16. Huang, F., Qu, R., Li, Z., Yang, X. and Ling, T. (2018), "Limit analysis for the face stability of a shallow-shield tunnel based on a variational approach to the Blow-Out failure mode", Int. J. Geomech., 18(6), 04018038. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001150. 
  17. Huang, F., Feng, Y., Zhang, Z., Yang, X. and Ling, T. (2019), "Upper bound solution of the safety factor for a shield tunnel face subjected to the Hoek-Brown failure criterion", Int. J. Civ. Eng., 17, 1941-1950. https://doi.org/10.1007/s40999-019-00416-3. 
  18. Huang, F., Wang, D., Xiao, N. and Ou, R-C. (2021), "Upper bound limit analysis of blow-out failure mode of excavation face of shield tunnel considering groundwater seepage", Geomech. Eng., 26(3), 227-234. https://doi.org/10.12989/gae.2021.26.3.227. 
  19. Imani, M. and Aali, R. (2020), "Effects of embedment depth of foundations on ultimate bearing capacity of rock masses", Geotech. Geol. Eng., 38, 6511-6528. https://doi.org/10.1007/s10706-020-01452-w. 
  20. Jancsecz, S. and Steiner, W. (1994), "Face support for a large mix-shield in heterogeneous ground conditions", Tunn'94, 531-550. 
  21. Khezri, N., Mohamad, H. and Fatahi, B. (2016), "Stability assessment of tunnel face in a layered soil using upper bound theorem of limit analysis", Geomech. Eng., 11(4), 471-492. https://doi.org/10.12989/gae.2016.11.4.471. 
  22. Kirsch, A. (2009), "On the face stability of shallow tunnels in sand", Advances in Geotechnical Engineering and Tunelling, Logos, Berlin, Vol. 16, 123. 
  23. Leca, E. and Dormieux, L. (1990), "Upper and lower bound solution for the face stability of shallow circular tunnels in frictional material", Geotechnique, 40(4), 581-606. https://doi.org/10.1680/geot.1990.40.4.581. 
  24. Li, P., Chen, K., Wang, F. and Li, Z. (2019), "An upper-bound analytical model of blow-out for a shallow tunnel in sand considering the partial failure within the face", Tunn. Undergr. Sp. Tech., 91, 102989. https://doi.org/10.1016/j.tust.2019.05.019. 
  25. Li, T.Z. and Yang, X.L. (2019), "Face stability analysis of rock tunnels under water table using Hoek-Brown failure criterion", Geomech. Eng., 18(3), 235-245. https://doi.org/10.12989/gae.2019.18.3.235. 
  26. Li, D., Zhao, L., Cheng, X. and Huang, F. (2020), "Active stability analysis of 3D shallow tunnel face with longitudinally inclined ground surface based on nonlinear Mohr-Coulomb failure criterion", Int. J. Geomech., 20(11), 04020198. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001844. 
  27. Li, D., Zhao, L., Cheng, X., Zuo, S. and Jiao, K. (2020), "Upper-bound limit analysis of passive failure of a 3D shallow tunnel face under the bidirectional inclined ground surfaces", Comput. Geotech., 118, 103310. https://doi.org/10.1016/j.compgeo.2019.103310. 
  28. Li, W., Zhang, C., Zhang, D., Ye, Z. and Tan, Z. (2022), "Face stability of shield tunnels considering a kinematically admissible velocity field of soil arching", J. Rock Mech. Geotech. Eng., 14(2), 505-526. https://doi.org/10.1016/j.jrmge.2021.10.006. 
  29. Mair, R.J. and Taylor, R.N. (1997), "Bored tunneling in the urban environment", Proceedings of the 14th International Conference on Soil Mechanics and Foundation Engineering, Hamburg, Germany. 
  30. Mao, N., AL-Bittar, T. and Soubra, A.H. (2012), "Probabilistic analysis and design of strip foundation resting on rocks obeying Hoek-Brown failure criterion", Int. J. Rock Mech. Min. Sci., 49, 45-58. https://doi.org/10.1016/j.ijrmms.2011.11.005. 
  31. Mollon, G., Dias, D. and Soubra, A.H. (2009a), "Probabilistic analysis and design of circular tunnels against face stability", Int. J. Geomech., 9(6), 237-249. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:6(237). 
  32. Mollon, G., Dias, D. and Soubra, A.H. (2009b), "Probabilistic analysis of circular tunnels in homogeneous soil using response surface methodology", J. Geotech. Geoenviron. Eng., 135(9), 1314-1325. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000060. 
  33. Mollon, G., Dias, D. and Soubra, A.H. (2010), "Face stability analysis of circular tunnels driven by a pressurized shield", J. Geotech. Geoenviron. Eng., 136(1), 215-229. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000194. 
  34. Mollon, G., Dias, D. and Soubra, A.H. (2011a), "Rotational failure mechanisms for the face stability analysis of tunnels driven by pressurized shield", Int. J. Numer. Anal. Methods Geomech., 35(12), 1363-1388. https://doi.org/10.1002/nag.962. 
  35. Mollon, G., Phoon, K.K., Dias, D. and Soubra, A.H. (2011b), "Validation of a new 2D failure mechanism for the stability analysis of a pressurized tunnel face in a spatially varying sand", J. Eng. Mech., 137(1), 8-21. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000196. 
  36. Mollon, G., Dias, D. and Soubra, A.H. (2013), "Continuous velocity fields of collapse and blowout of a pressurized tunnel face in purely cohesive soil", Int. J. Numer. Anal. Methods Geomech., 37(13), 2061-2083. https://doi.org/10.1002/nag.2121. 
  37. Murayama, S., Endo, M., Hashiba, T., Yamamoto, K. and Sasaki, H. (1966), "Geotechnical aspects for the excavating performance of the shield machines", Proceedings of the 21st Annual Lecture in Meeting of Japan Society of Civil Engineers, Tokyo, Japan. 
  38. Pan, Q. and Dias, D. (2017), "Upper-bound analysis on the face stability of a non-circular tunnel", Tunn. Undergr. Sp. Tech., 62, 96-102. https://doi.org/10.1016/j.tust.2016.11.010. 
  39. Pan, Q. and Dias, D. (2018), "Three-dimensional static and seismic stability analysis of a tunnel face driven in weak rock masses", Int. J. Geomech., 18(6), 1-10. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001174. 
  40. Saada, Z., Maghous, S. and Garnier, D. (2008), "Bearing capacity of shallow foundations on rocks obeying a modified Hoek-Brown failure criterion", Comput. Geotech., 35(2), 144-154. https://doi.org/10.1016/j.compgeo.2007.06.003. 
  41. Saada, Z., Maghous, S. and Garnier, D. (2012), "Stability analysis of rock slopes subjected to seepage faces using the modified Hoek-Brown criterion", Int. J. Rock Mech. Min. Sci., 55, 45-54. https://doi.org/10.1016/j.ijrmms.2012.06.010. 
  42. Seghateh Mojtahedi, A., Imani, M. and Fahimifar, A. (2021), "Three-dimensional face stability analysis of deep and shallow tunnels in rock masses", Int. J. Geomech., 21(10), 04021193. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002152. 
  43. Senet, S., Mollon, G. and Jimenez, R. (2013), "Tunnel face stability in heavily fractured rock masses that follow the Hoek-Brown failure criterion", Int. J. Rock Mech. Min. Sci., 60, 440-451. https://doi.org/10.1016/j.ijrmms.2013.01.004. 
  44. Shamloo, S. and Imani, M. (2021), "Upper bound solution for the bearing capacity of two adjacent footings on rock masses", Comput. Geotech., 129, 103855. https://doi.org/10.1016/j.compgeo.2020.103855. 
  45. Shiau, J. and Al-Asadi, F. (2020), "Three-dimensional heading stability of twin circular tunnels", Geotech. Geol. Eng., 38, 2973-2988. https://doi.org/10.1007/s10706-020-01201-z. 
  46. Sloan, S.W. and Assadi, A. (1994), "Undrained stability of a plane strain heading", Can. Geotech. J., 31, 443-450. https://doi.org/10.1139/t94-051. 
  47. Subrin, D. (2002), "Etudes theoriques sur la stabilite et le comportement des tunnels renforces par boulonnage", These de doctorat soutenue a l'Institut National des Sciences Appliquees de Lyon, France. 
  48. Vasarhelyi, B. (2009), "A possible method for estimating the Poission's rate values of the rock masses", Acta Geod. Geophys. Hung., 44(3), 312-322. https://doi.org/10.1556/ageod.44.2009.3.4. 
  49. Vermeer, P.A., Ruse, N. and Marcher, T. (2002), "Tunnel heading stability in drained ground", Felsbau, 20(6), 8-18. 
  50. Wong, K.S., Ng, C.W.W., Chen, Y.M. and Bian, X.C. (2012), "Centrifuge and numerical investigation of passive failure of tunnel face in sand", Tunn. Undergr. Sp. Tech., 28, 297-303. https://doi.org/10.1016/j.tust.2011.12.004. 
  51. Yang, X., Yang, Z., Hou, G., Jiang, Y., Shao, X. and Qi, W. (2022), "Evaluation of the active limit support pressure for shield tunnel face in clay-sand interface mixed ground", Int. J. Geomech., 22(7). https://doi.org/10.1061/(ASCE)GM.1943-5622.0002404. 
  52. Yang, X.L. and Yin, J.H. (2005), "Upper bound solution for ultimate bearing capacity with a modified Hoek-Brown failure criterion", Int. J. Rock Mech. Min. Sci., 42, 550-560. https://doi.org/10.1016/j.ijrmms.2005.03.002. 
  53. Zamora Hernandez, Y., Durand Farfan, A. and Pacheco de Assis, A. (2019), "Three-dimensional analysis of excavation face stability of shallow tunnels", Tunn. Undergr. Sp. Tech., 92, 103062. https://doi.org/10.1016/j.tust.2019.103062. 
  54. Zhang, C., Han, K. and Zhang, D. (2015), "Face stability analysis of shallow circular tunnels in cohesive-frictional soils", Tunn. Undergr. Sp. Tech., 50, 345-357. https://doi.org/10.1016/j.tust.2015.08.007. 
  55. Zhao, L., Li, D., Li, L., Yang, F., Cheng, X. and Lou, W. (2017), "Three-dimensional stability analysis of a longitudinally inclined shallow tunnel face", Comput. Geotech., 87, 32-48. https://doi.org/10.1016/j.compgeo.2017.01.015. 
  56. Zou, J., Chen, G. and Qian, Z. (2019), "Tunnel face stability in cohesion-frictional soils considering the soil arching effect by improved failure models", Comput. Geotech., 106, 1-17. https://doi.org/10.1016/j.compgeo.2018.10.014.