Acknowledgement
This study is supported via funding from Prince Satam bin Abdulaziz University project number (PSAU/2024/R/1445). The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/283/45.
References
- Abdelmawla, A., Ma, S., Yang, J.J. and Kim, S.S. (2023), "Subsurface anomaly detection utilizing synthetic GPR images and deep learning model", Geomech. Eng., 33(2), 203-209. https://doi.org/10.12989/gae.2023.33.2.203.
- Abdollahipour, A. and Rahmannejad, R. (2013), "Investigating the effects of lateral stress to vertical stress ratios and caverns shape on the cavern stability and sidewall displacements", Arabian J. Geosci., 6, 4811-4819. https://doi.org/10.1007/s12517-012-0698-z.
- Albaijan, I., Samadi, H., Mahmood, F.M.Z., Mahmoodzadeh, A., Fakhri, D., Ibrahim, H.H. and El Ouni, M.H. (2024), "Evaluation of concrete's fracture toughness under an acidic environment condition using advanced machine learning algorithms", Eng. Fract. Mech., 109948. https://doi.org/10.1016/j.engfracmech.2024.109948.
- Chou, J.S. and Thedja, J.P.P. (2016), "Metaheuristic optimization within machine learning-based classification system for early warnings related to geotechnical problems", Automat. Constr., 68, 65-80. https://doi.org/10.1016/j.autcon.2016.03.015.
- Goh, A.T.C., Zhang, W., Zhang, Y., Xiao, Y. and Xiang, Y. (2018), "Determination of earth pressure balance tunnel-related maximum surface settlement: a multivariate adaptive regression splines approach", Bull. Eng. Geol. Environ., 77, 489-500. https://doi.org/10.1007/s10064-016-0937-8.
- Hu, D., Li, Y., Yang, X., Liang, X., Zhang, K. andLiang, X. (2023), "Experiment and application of NATM tunnel deformation monitoring based on 3D laser scanning", Struct. Control Health Monit., 2023, 1-13. https://doi.org/10.1155/2023/3341788.
- Kamran, M., Shahani, N.M. and Jahed Armaghani, D. (2022), "Decision support system for underground coal pillar stability using unsupervised and supervised machine learning approaches", Geomech. Eng., 30(2), 107-121. https://doi.org/10.12989/gae.2022.30.2.107.
- Khatti, J., Samadi, H. and Grover, K.S. (2023), "Estimation of settlement of pile group in clay using soft computing techniques", Geotech. Geol. Eng., 1-32. https://doi.org/10.1007/s10706-023-02643-x.
- Lei, J., Fang, H., Zhu, Y., Chen, Z., Wang, X., Xue, B., Yang, M., and Wang, N. (2024), "GPR detection localization of underground structures based on deep learning and reverse time migration", NDT & E Int., 143, 103043. https://doi.org/10.1016/j.ndteint.2024.103043.
- Liu, C., Cui, J., Zhang, Z., Liu, H., Huang, X. and Zhang, C. (2021), "The role of TBM asymmetric tail-grouting on surface settlement in coarse-grained soils of urban area: Field tests and FEA modelling", Tunn. Undergr. Sp. Tech., 111, 103857. https://doi.org/10.1016/j.tust.2021.103857.
- Lawal, A.I., Kim, M. and Kwon, S. (2023), "Soft computing based mathematical models for improved prediction of rock brittleness index", Geomech. Eng., 33(3), 279-289. https://doi.org/10.12989/gae.2023.33.3.279.
- Li, A., Liu, Y., Dai, F., Liu, K. and Wang, K. (2022), "Deformation mechanisms of sidewall in layered rock strata dipping steeply against the inner space of large underground powerhouse cavern", Tunn. Undergr. Sp. Tech., 120, 104305. https://doi.org/10.1016/j.tust.2021.104305.
- Mahmoodzadeh, A., Mohammadi, M., Abdulhamid, S., Hama Ali, H., Ibrahim, H. and Rashidi, S. (2022a), "Forecasting tunnel path geology using Gaussian process regression", Geomech. Eng., 28(4), 359-374. https://doi.org/10.12989/gae.2022.28.4.359.
- Mahmoodzadeh, A., Mohammadi, M., Abdulhamid, S., Ibrahim, H., Hama Ali, H., Nejati, H.R. and Rashidi, S. (2022b), "Prediction of duration and construction cost of road tunnels using Gaussian process regression", Geomech. Eng., 28(1), 65-75. https://doi.org/10.12989/gae.2021.28.1.065.
- Pham, B.T., Hoang, T.A., Nguyen, D.M. and Bui, D.T. (2018), "Prediction of shear strength of soft soil using machine learning methods", Catena, 166, 181-191. https://doi.org/10.1016/j.catena.2018.04.004.
- Puri, N., Prasad, H.D. and Jain, A. (2018), "Prediction of geotechnical parameters using machine learning techniques", Procedia Comput. Sci., 125, 509-517. https://doi.org/10.1016/j.procs.2017.12.066.
- Rajabi, M., Rahmannejad, R., Rezaei, M. and Ganjalipour, K. (2017), "Evaluation of the maximum horizontal displacement around the power station caverns using artificial neural network", Tunn. Undergr. Sp. Tech., 64, 51-60. https://doi.org/10.1016/j.tust.2017.01.010.
- Samadi, H., Hassanpour, J. and Farrokh, E. (2021), "Maximum surface settlement prediction in EPB TBM tunneling using soft computing techniques", J. Phys.: Conference Series, 1973(1), 012195. IOP Publishing.
- Samadi, H., Hassanpour, J. and Rostami, J. (2023), "Prediction of earth pressure balance for EPB-TBM using machine learning algorithms", Int. J. Geo-Eng., 14(1), 21. https://doi.org/10.1186/s40703-023-00198-7.
- Shahmohammadi, H., Dezfoulian, M. and Mansoorizadeh, M. (2021), "Paraphrase detection using LSTM networks and handcrafted features", Multimedia Tools Appl., 80, 6479-6492. https://doi.org/10.1007/s11042-020-09996-y.
- Sherstinsky, A. (2020), "Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network", Physica D: Nonlinear Phenomena, 404, 132306. https://doi.org/10.1016/j.physd.2019.132306.
- Shi, M.L., Lv, L. and Xu, L. (2023a), "A multi-fidelity surrogate model based on extreme support vector regression: fusing different fidelity data for engineering design", Eng. Comput., 40(2), 473-493. https://doi.org/10.1108/EC-10-2021-0583.
- Shi, M., Hu, W., Li, M., Zhang, J., Song, X. and Sun, W. (2023b), "Ensemble regression based on polynomial regression-based decision tree and its application in the in-situ data of tunnel boring machine", Mech. Syst. Signal Pr., 188, 110022. https://doi.org/10.1016/j.ymssp.2022.110022.
- Su, F., He, X., Dai, M., Yang, J., Hamanaka, A., Yu, Y., Li, W. and Li, J. (2023a), "Estimation of the cavity volume in the gasification zone for underground coal gasification under different oxygen flow conditions", Energy, 285, 129309. https://doi.org/10.1016/j.energy.2023.129309.
- Su, Y., Wang, J., Li, D., Wang, X., Hu, L., Yao, Y. and Kang, Y. (2023b), "End-to-end deep learning model for underground utilities localization using GPR", Automat. Constr., 149, 104776. https://doi.org/10.1016/j.autcon.2023.104776.
- Wang, L., Wu, C., Tang, L., Zhang, W., Lacasse, S., Liu, H. and Gao, L. (2020), "Efficient reliability analysis of earth dam slope stability using extreme gradient boosting method", Acta Geotechnica, 15, 3135-3150. https://doi.org/10.1007/s11440-020-00962-4.
- Wei, W., Gong, J., Deng, J. and Xu, W. (2023), "Effects of air vent size and location design on air supply efficiency in flood discharge tunnel operations", J. Hydraul. Eng., 149(12). https://doi.org/10.1061/JHEND8.HYENG-13305.
- Yin, H., Wu, Q., Yin, S., Dong, S., Dai, Z. and Soltanian, M.R. (2023), "Predicting mine water inrush accidents based on water level anomalies of borehole groups using long short-term memory and isolation forest", J. Hydrol., 616, 128813. https://doi.org/10.1016/j.jhydrol.2022.128813.
- Zhang, W. and Goh, A.T. (2012), "Reliability assessment on ultimate and serviceability limit states and determination of critical factor of safety for underground rock caverns", Tunn. Undergr. Sp. Tech., 32, 221-230. https://doi.org/10.1016/j.tust.2012.07.002.
- Zhang, W.G. and Goh, A.T.C. (2013), "Multivariate adaptive regression splines for analysis of geotechnical engineering systems", Comput. Geotech., 48, 82-95. https://doi.org/10.1016/j.compgeo.2012.09.016.
- Zhang, W.G. and Goh, A.T.C. (2015), "Regression models for estimating ultimate and serviceability limit states of underground rock caverns", Eng. Geol., 188, 68-76. https://doi.org/10.1016/j.enggeo.2015.01.021.
- Zhang, W. and Goh, A.T. (2016), "Multivariate adaptive regression splines and neural network models for prediction of pile drivability", Geosci. Front., 7(1), 45-52. https://doi.org/10.1016/j.gsf.2014.10.003.
- Zhang, W.G., Li, H.R., Wu, C.Z., Li, Y.Q., Liu, Z.Q. and Liu, H.L. (2021), "Soft computing approach for prediction of surface settlement induced by earth pressure balance shield tunneling", Underground Space, 6(4), 353-363. https://doi.org/10.1016/j.undsp.2019.12.003.
- Zhang, W., Li, Y., Wu, C., Li, H., Goh, A.T.C. and Liu, H. (2022), "Prediction of lining response for twin tunnels constructed in anisotropic clay using machine learning techniques", Underground Space, 7(1), 122-133. https://doi.org/10.1016/j.undsp.2020.02.007.
- Zhu, W.S., Sui, B., Li, X.J., Li, S.C. and Wang, W.T. (2008), "A methodology for studying the high wall displacement of large scale underground cavern complexes and its applications", Tunn. Undergr. Sp. Tech., 23(6), 651-664. https://doi.org/10.1016/j.tust.2007.12.009.
- Zhu, W.S., Li, X.J., Zhang, Q.B., Zheng, W.H., Xin, X.L., Sun, A. H. and Li, S.C. (2010), "A study on sidewall displacement prediction and stability evaluations for large underground power station caverns", Int. J. Rock Mech. Min. Sci., 47(7), 1055-1062. https://doi.org/10.1016/j.ijrmms.2010.07.008.