DOI QR코드

DOI QR Code

In-depth exploration of machine learning algorithms for predicting sidewall displacement in underground caverns

  • Hanan Samadi (IRO, Civil Engineering Department, University of Halabja) ;
  • Abed Alanazi (Department of Computer Science, College of Computer Engineering and Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University) ;
  • Sabih Hashim Muhodir (Department of Architectural Engineering, Cihan University-Erbil) ;
  • Shtwai Alsubai (Department of Computer Science, College of Computer Engineering and Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University) ;
  • Abdullah Alqahtani (Department of Computer Science, College of Computer Engineering and Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University) ;
  • Mehrez Marzougui (College of Computer Science, King Khalid University)
  • Received : 2022.06.24
  • Accepted : 2022.08.30
  • Published : 2024.05.25

Abstract

This paper delves into the critical assessment of predicting sidewall displacement in underground caverns through the application of nine distinct machine learning techniques. The accurate prediction of sidewall displacement is essential for ensuring the structural safety and stability of underground caverns, which are prone to various geological challenges. The dataset utilized in this study comprises a total of 310 data points, each containing 13 relevant parameters extracted from 10 underground cavern projects located in Iran and other regions. To facilitate a comprehensive evaluation, the dataset is evenly divided into training and testing subset. The study employs a diverse array of machine learning models, including recurrent neural network, back-propagation neural network, K-nearest neighbors, normalized and ordinary radial basis function, support vector machine, weight estimation, feed-forward stepwise regression, and fuzzy inference system. These models are leveraged to develop predictive models that can accurately forecast sidewall displacement in underground caverns. The training phase involves utilizing 80% of the dataset (248 data points) to train the models, while the remaining 20% (62 data points) are used for testing and validation purposes. The findings of the study highlight the back-propagation neural network (BPNN) model as the most effective in providing accurate predictions. The BPNN model demonstrates a remarkably high correlation coefficient (R2 = 0.99) and a low error rate (RMSE = 4.27E-05), indicating its superior performance in predicting sidewall displacement in underground caverns. This research contributes valuable insights into the application of machine learning techniques for enhancing the safety and stability of underground structures.

Keywords

Acknowledgement

This study is supported via funding from Prince Satam bin Abdulaziz University project number (PSAU/2024/R/1445). The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/283/45.

References

  1. Abdelmawla, A., Ma, S., Yang, J.J. and Kim, S.S. (2023), "Subsurface anomaly detection utilizing synthetic GPR images and deep learning model", Geomech. Eng., 33(2), 203-209. https://doi.org/10.12989/gae.2023.33.2.203.
  2. Abdollahipour, A. and Rahmannejad, R. (2013), "Investigating the effects of lateral stress to vertical stress ratios and caverns shape on the cavern stability and sidewall displacements", Arabian J. Geosci., 6, 4811-4819. https://doi.org/10.1007/s12517-012-0698-z.
  3. Albaijan, I., Samadi, H., Mahmood, F.M.Z., Mahmoodzadeh, A., Fakhri, D., Ibrahim, H.H. and El Ouni, M.H. (2024), "Evaluation of concrete's fracture toughness under an acidic environment condition using advanced machine learning algorithms", Eng. Fract. Mech., 109948. https://doi.org/10.1016/j.engfracmech.2024.109948.
  4. Chou, J.S. and Thedja, J.P.P. (2016), "Metaheuristic optimization within machine learning-based classification system for early warnings related to geotechnical problems", Automat. Constr., 68, 65-80. https://doi.org/10.1016/j.autcon.2016.03.015.
  5. Goh, A.T.C., Zhang, W., Zhang, Y., Xiao, Y. and Xiang, Y. (2018), "Determination of earth pressure balance tunnel-related maximum surface settlement: a multivariate adaptive regression splines approach", Bull. Eng. Geol. Environ., 77, 489-500. https://doi.org/10.1007/s10064-016-0937-8.
  6. Hu, D., Li, Y., Yang, X., Liang, X., Zhang, K. andLiang, X. (2023), "Experiment and application of NATM tunnel deformation monitoring based on 3D laser scanning", Struct. Control Health Monit., 2023, 1-13. https://doi.org/10.1155/2023/3341788.
  7. Kamran, M., Shahani, N.M. and Jahed Armaghani, D. (2022), "Decision support system for underground coal pillar stability using unsupervised and supervised machine learning approaches", Geomech. Eng., 30(2), 107-121. https://doi.org/10.12989/gae.2022.30.2.107.
  8. Khatti, J., Samadi, H. and Grover, K.S. (2023), "Estimation of settlement of pile group in clay using soft computing techniques", Geotech. Geol. Eng., 1-32. https://doi.org/10.1007/s10706-023-02643-x.
  9. Lei, J., Fang, H., Zhu, Y., Chen, Z., Wang, X., Xue, B., Yang, M., and Wang, N. (2024), "GPR detection localization of underground structures based on deep learning and reverse time migration", NDT & E Int., 143, 103043. https://doi.org/10.1016/j.ndteint.2024.103043.
  10. Liu, C., Cui, J., Zhang, Z., Liu, H., Huang, X. and Zhang, C. (2021), "The role of TBM asymmetric tail-grouting on surface settlement in coarse-grained soils of urban area: Field tests and FEA modelling", Tunn. Undergr. Sp. Tech., 111, 103857. https://doi.org/10.1016/j.tust.2021.103857.
  11. Lawal, A.I., Kim, M. and Kwon, S. (2023), "Soft computing based mathematical models for improved prediction of rock brittleness index", Geomech. Eng., 33(3), 279-289. https://doi.org/10.12989/gae.2023.33.3.279.
  12. Li, A., Liu, Y., Dai, F., Liu, K. and Wang, K. (2022), "Deformation mechanisms of sidewall in layered rock strata dipping steeply against the inner space of large underground powerhouse cavern", Tunn. Undergr. Sp. Tech., 120, 104305. https://doi.org/10.1016/j.tust.2021.104305.
  13. Mahmoodzadeh, A., Mohammadi, M., Abdulhamid, S., Hama Ali, H., Ibrahim, H. and Rashidi, S. (2022a), "Forecasting tunnel path geology using Gaussian process regression", Geomech. Eng., 28(4), 359-374. https://doi.org/10.12989/gae.2022.28.4.359.
  14. Mahmoodzadeh, A., Mohammadi, M., Abdulhamid, S., Ibrahim, H., Hama Ali, H., Nejati, H.R. and Rashidi, S. (2022b), "Prediction of duration and construction cost of road tunnels using Gaussian process regression", Geomech. Eng., 28(1), 65-75. https://doi.org/10.12989/gae.2021.28.1.065.
  15. Pham, B.T., Hoang, T.A., Nguyen, D.M. and Bui, D.T. (2018), "Prediction of shear strength of soft soil using machine learning methods", Catena, 166, 181-191. https://doi.org/10.1016/j.catena.2018.04.004.
  16. Puri, N., Prasad, H.D. and Jain, A. (2018), "Prediction of geotechnical parameters using machine learning techniques", Procedia Comput. Sci., 125, 509-517. https://doi.org/10.1016/j.procs.2017.12.066.
  17. Rajabi, M., Rahmannejad, R., Rezaei, M. and Ganjalipour, K. (2017), "Evaluation of the maximum horizontal displacement around the power station caverns using artificial neural network", Tunn. Undergr. Sp. Tech., 64, 51-60. https://doi.org/10.1016/j.tust.2017.01.010.
  18. Samadi, H., Hassanpour, J. and Farrokh, E. (2021), "Maximum surface settlement prediction in EPB TBM tunneling using soft computing techniques", J. Phys.: Conference Series, 1973(1), 012195. IOP Publishing.
  19. Samadi, H., Hassanpour, J. and Rostami, J. (2023), "Prediction of earth pressure balance for EPB-TBM using machine learning algorithms", Int. J. Geo-Eng., 14(1), 21. https://doi.org/10.1186/s40703-023-00198-7.
  20. Shahmohammadi, H., Dezfoulian, M. and Mansoorizadeh, M. (2021), "Paraphrase detection using LSTM networks and handcrafted features", Multimedia Tools Appl., 80, 6479-6492. https://doi.org/10.1007/s11042-020-09996-y.
  21. Sherstinsky, A. (2020), "Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network", Physica D: Nonlinear Phenomena, 404, 132306. https://doi.org/10.1016/j.physd.2019.132306.
  22. Shi, M.L., Lv, L. and Xu, L. (2023a), "A multi-fidelity surrogate model based on extreme support vector regression: fusing different fidelity data for engineering design", Eng. Comput., 40(2), 473-493. https://doi.org/10.1108/EC-10-2021-0583.
  23. Shi, M., Hu, W., Li, M., Zhang, J., Song, X. and Sun, W. (2023b), "Ensemble regression based on polynomial regression-based decision tree and its application in the in-situ data of tunnel boring machine", Mech. Syst. Signal Pr., 188, 110022. https://doi.org/10.1016/j.ymssp.2022.110022.
  24. Su, F., He, X., Dai, M., Yang, J., Hamanaka, A., Yu, Y., Li, W. and Li, J. (2023a), "Estimation of the cavity volume in the gasification zone for underground coal gasification under different oxygen flow conditions", Energy, 285, 129309. https://doi.org/10.1016/j.energy.2023.129309.
  25. Su, Y., Wang, J., Li, D., Wang, X., Hu, L., Yao, Y. and Kang, Y. (2023b), "End-to-end deep learning model for underground utilities localization using GPR", Automat. Constr., 149, 104776. https://doi.org/10.1016/j.autcon.2023.104776.
  26. Wang, L., Wu, C., Tang, L., Zhang, W., Lacasse, S., Liu, H. and Gao, L. (2020), "Efficient reliability analysis of earth dam slope stability using extreme gradient boosting method", Acta Geotechnica, 15, 3135-3150. https://doi.org/10.1007/s11440-020-00962-4.
  27. Wei, W., Gong, J., Deng, J. and Xu, W. (2023), "Effects of air vent size and location design on air supply efficiency in flood discharge tunnel operations", J. Hydraul. Eng., 149(12). https://doi.org/10.1061/JHEND8.HYENG-13305.
  28. Yin, H., Wu, Q., Yin, S., Dong, S., Dai, Z. and Soltanian, M.R. (2023), "Predicting mine water inrush accidents based on water level anomalies of borehole groups using long short-term memory and isolation forest", J. Hydrol., 616, 128813. https://doi.org/10.1016/j.jhydrol.2022.128813.
  29. Zhang, W. and Goh, A.T. (2012), "Reliability assessment on ultimate and serviceability limit states and determination of critical factor of safety for underground rock caverns", Tunn. Undergr. Sp. Tech., 32, 221-230. https://doi.org/10.1016/j.tust.2012.07.002.
  30. Zhang, W.G. and Goh, A.T.C. (2013), "Multivariate adaptive regression splines for analysis of geotechnical engineering systems", Comput. Geotech., 48, 82-95. https://doi.org/10.1016/j.compgeo.2012.09.016.
  31. Zhang, W.G. and Goh, A.T.C. (2015), "Regression models for estimating ultimate and serviceability limit states of underground rock caverns", Eng. Geol., 188, 68-76. https://doi.org/10.1016/j.enggeo.2015.01.021.
  32. Zhang, W. and Goh, A.T. (2016), "Multivariate adaptive regression splines and neural network models for prediction of pile drivability", Geosci. Front., 7(1), 45-52. https://doi.org/10.1016/j.gsf.2014.10.003.
  33. Zhang, W.G., Li, H.R., Wu, C.Z., Li, Y.Q., Liu, Z.Q. and Liu, H.L. (2021), "Soft computing approach for prediction of surface settlement induced by earth pressure balance shield tunneling", Underground Space, 6(4), 353-363. https://doi.org/10.1016/j.undsp.2019.12.003.
  34. Zhang, W., Li, Y., Wu, C., Li, H., Goh, A.T.C. and Liu, H. (2022), "Prediction of lining response for twin tunnels constructed in anisotropic clay using machine learning techniques", Underground Space, 7(1), 122-133. https://doi.org/10.1016/j.undsp.2020.02.007.
  35. Zhu, W.S., Sui, B., Li, X.J., Li, S.C. and Wang, W.T. (2008), "A methodology for studying the high wall displacement of large scale underground cavern complexes and its applications", Tunn. Undergr. Sp. Tech., 23(6), 651-664. https://doi.org/10.1016/j.tust.2007.12.009.
  36. Zhu, W.S., Li, X.J., Zhang, Q.B., Zheng, W.H., Xin, X.L., Sun, A. H. and Li, S.C. (2010), "A study on sidewall displacement prediction and stability evaluations for large underground power station caverns", Int. J. Rock Mech. Min. Sci., 47(7), 1055-1062. https://doi.org/10.1016/j.ijrmms.2010.07.008.