DOI QR코드

DOI QR Code

A novel model of a rotating nonlocal micropolar thermoelastic medium with temperature-dependent properties

  • Samia M. Said (Department of Mathematics, Faculty of Science, Zagazig University) ;
  • Elsayed M. Abd-Elaziz (Ministry of Higher Education, Zagazig Higher Institute of Engineering & Technology) ;
  • Mohamed I.A. Othman (Department of Mathematics, Faculty of Science, Zagazig University)
  • 투고 : 2023.08.17
  • 심사 : 2024.05.07
  • 발행 : 2024.05.25

초록

In the current work, the effect of rotation and mechanical force on a nonlocal micropolar thermoelastic solid with temperature-dependent properties was discussed using Erigen's nonlocal thermoelasticity theory. The problem is resolved using Laplace transforms and Fourier series. For the nonlocal and local parameters, the physical fields have been illustrated. The numerical inversion approach is used to acquire the resulting fields in the physical domain. Based on numerical analysis, the effects of rotation, the modulus of elasticity's dependency on temperature, and nonlocal, mechanical force are examined on the physical fields.

키워드

참고문헌

  1. Alharbi, A.M., Othman, M.I. and Al-Autabi, A.A.M.K. (2021), "Three-phase-lag model on a micropolar magneto-thermoelastic medium with voids", Struct. Eng. Mech., 78(2), 187-197. https://doi.org/10.12989/sem.2021.78.2.187.
  2. Ciarletta, M., Scalia, A. and Svanadze, M. (2007), "Fundamental solution in the theory of micropolar thermoelasticity for materials with voids", J. Therm. Stress., 30(3), 213-229. https://doi.org/10.1080/01495730601130901.
  3. Edelen, D.G. and Laws, N. (1971), "On the thermodynamics of systems with nonlocality", Arch. Rat. Mech. Anal., 43, 24-35. https://doi.org/10.1007/BF00251543.
  4. El-Karamany, A.S. and Ezzat, M.A. (2013), "On the three-phaselag linear micropolar thermoelasticity theory", Eur. J. Mech.-A Solid., 40, 198-208. https://doi.org/10.1016/j.euromechsol.2013.01.011.
  5. Eringen, A.C. (1966), "Linear theory of micropolar elasticity", J. Math. Mech., 15(6), 909-923.
  6. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  7. Eringen, A.C. (1974), "Theory of nonlocal thermoelasticity", Int. J. Eng. Sci., 12(12), 1063-1077. https://doi.org/10.1016/0020-7225(74)90033-0.
  8. Eringen, A.C. (1991), "Memory-dependent nonlocal electromagnetic elastic solids and superconductivity", J. Math. Phys., 32(3), 787-796. https://doi.org/10.1063/1.529372.
  9. Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer, New York.
  10. Eringen, A.C. and Suhubi, E.S. (1964a), "Nonlinear theory of micro-elastic solids I", Int. J. Eng. Sci., 2(2), 189-203. https://doi.org/10.1016/0020-7225(64)90004-7.
  11. Eringen, A.C. and Edelen, D. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
  12. Eringen, A.C. and Wegner, J.L. (2003), "Nonlocal continuum field theories", Appl. Mech. Rev., 56(2), B20-B22. https://doi.org/10.1007/BF00251544.
  13. Eringen, C. (2014), Foundations of Micropolar Thermoelasticity: Course Held at the Department for Mechanics of Deformable Bodies July 1970, Vol. 23, Springer.
  14. Ezzat, M., Zakaria, M. and Abdel-Bary, A. (2004), "Generalized thermoelasticity with temperature dependent modulus of elasticity under three theories", J. Appl. Math. Comput., 14(3), 193-212. https://doi.org/10.1007/BF02936108.
  15. Khurana, A. and Tomar, S.K. (2017), "Rayleigh-type waves in nonlocal micropolar elastic solid half-space", Ultrasonic., 73, 162-168. https://doi.org/10.1016/j.ultras.2016.09.005.
  16. Kumar, R. and Rani, L. (2004), "Deformation due to mechanical and thermal sources in generalised orthorhombic thermoelastic material", Sadhana, 29(10), 429-447. https://doi.org/10.1007/BF02703254.
  17. Lata, P. (2018), "Reflection and refraction of plane waves in layered nonlocal elastic and anisotropic thermoelastic medium", Struct. Eng. Mech., 66(1), 113-124. https://doi.org/10.12989/sem.2018.66.1.113.
  18. Lata, P. (2020), "Time harmonic interactions in non local thermoelastic solid with two temperatures", Struct. Eng. Mech., 74(3), 341-350. https://doi.org/10.12989/sem.2020.74.3.341.
  19. Marin, M., Baleanu, D. and Vlase, S. (2017), "Effect of microtemperatures for micropolar thermoelastic bodies", Struct. Eng. Mech., 61(3), 381-387. https://doi.org/10.12989/sem.2017.61.3.381.
  20. Marin, M., Chirila, A., Ochsner, A. and Vlase, S. (2019), "About finite energy solutions in thermoelasticity of micropolar bodies with voids", Bound. Value Prob., 18, 1-14. https://doi.org/10.1186/s13661-019-1203-3.
  21. Montanaro, A. (1999), "On singular surfaces in isotropic linear thermoelasticity with initial stress", J. Acoust. Soc. Am., 106(3), 1586-1588. https://doi.org/10.1121/1.427154.
  22. Nowacki, W. (1966), "Couple stresses in the theory of thermoelasticity III", Bull. Acad. Polon. Sci. Ser. Sci. Technol., 14, 801-809. https://doi.org/10.1007/978-3-7091-5581-3_17.
  23. Othman, M.I.A. and Abbas, I.A. (2023), "2-D Problem of micropolar thermoelastic rotating medium with eigenvalue approach under the three-phase-lag model", Wave. Random Complex Media, 33(2), 280-295. https://doi.org/10.1080/17455030.2021.1879405.
  24. Othman, M.I.A. and Abd-Elaziz, E.M. (2017), "Effect of rotation and gravitational on a micropolar magneto-thermoelastic medium with Dual-phase-lag model", Microsyst. Tech., 23(10), 4979-4987. https://doi.org/10.1007/s00542-017-3295-y.
  25. Saeed, T. and Abbas, I. (2022), "Effects of the nonlocal thermoelastic model in a thermoelastic nanoscale material", Math., 10(2), 284. https://doi.org/10.3390/math10020284.
  26. Said, S.M. (2022), "A viscoelastic-micropolar solid with voids and microtemperatures under the effect of the gravity field", Geomech. Eng., 31(2), 159-166. https://doi.org/10.12989/gae.2022.31.2.159.
  27. Said, S.M. (2023), "A novel model of a nonlocal porous thermoelastic solid with temperature-dependent properties using an eigenvalue approach", Geomech. Eng., 32(2), 137-144. https://doi.org/10.12989/gae.2023.32.2.137.
  28. Sarkar, N., Mondal, S. and Othman, M.I.A. (2020), "Effect of the laser pulse on transient waves in a non-local thermoelastic medium under Green-Naghdi theory", Struct. Eng. Mech., 74(4), 471-479. https://doi.org/10.12989/sem.2020.74.4.471.
  29. Schoenberg, M. and Censor, D. (1973), "Elastic waves in rotating media", Quart. Appl. Math., 31(1), 115-125. https://doi.org/10.1090/qam/99708.
  30. Shaw, S. and Mukhopadhyay, B. (2013), "Moving heat source response in micropolar half-space with two-temperature theory", Contin. Mech. Thermodyn., 25(3), 523-535. https://doi.org/10.1007/s00161-012-0284-3.
  31. Singh, B. and Bijarnia, R. (2021), "Nonlocal effects on propagation of waves in a generalized thermoelastic solid half space", Struct. Eng. Mech., 77(4), 473-479. https://doi.org/10.12989/sem.2021.77.4.473.
  32. Suhubi, E.S. and Eringen, A.C. (1964b), "Nonlinear theory of micro-elastic solids II", Int. J. Eng. Sci., 2(4), 389-404. https://doi.org/10.1016/0020-7225(64)90017-5.
  33. Tauchert, T.R., Claus, Jr W.D. and Ariman, T. (1968), "The linear theory of micropolar thermoelasticity", Int. J. Eng. Sci., 6(1), 37-47. https://doi.org/10.1016/0020-7225(68)90037-2.
  34. Yu, Y.J., Tian, X.G. and Xiong, Q.L. (2016), "Nonlocal thermoelasticity based on nonlocal heat conduction and nonlocal elasticity", Eur. J. Mech.-A/Solid., 60, 238-253. https://doi.org/10.1016/j.euromechsol.2016.08.004.
  35. Zenkour A.M. and Abouelregal, A.E. (2014), "Effect of harmonically varying heat on FG nanobeams in the context of a nonlocal two-temperature thermoelasticity theory", Eur. J. Comput. Mech., 23(1-2), 1-14. https://doi.org/10.1080/17797179.2014.882141.
  36. Zhang, P., Wei, P. and Tang, Q. (2015), "Reflection of micropolar elastic waves at the non-free surface of a micropolar elastic half-space", Acta Mechanica, 226(9), 2925-2937. https://doi.org/10.1007/s00707-015-1346-y.