References
- Alharbi, A.M., Othman, M.I. and Al-Autabi, A.A.M.K. (2021), "Three-phase-lag model on a micropolar magneto-thermoelastic medium with voids", Struct. Eng. Mech., 78(2), 187-197. https://doi.org/10.12989/sem.2021.78.2.187.
- Ciarletta, M., Scalia, A. and Svanadze, M. (2007), "Fundamental solution in the theory of micropolar thermoelasticity for materials with voids", J. Therm. Stress., 30(3), 213-229. https://doi.org/10.1080/01495730601130901.
- Edelen, D.G. and Laws, N. (1971), "On the thermodynamics of systems with nonlocality", Arch. Rat. Mech. Anal., 43, 24-35. https://doi.org/10.1007/BF00251543.
- El-Karamany, A.S. and Ezzat, M.A. (2013), "On the three-phaselag linear micropolar thermoelasticity theory", Eur. J. Mech.-A Solid., 40, 198-208. https://doi.org/10.1016/j.euromechsol.2013.01.011.
- Eringen, A.C. (1966), "Linear theory of micropolar elasticity", J. Math. Mech., 15(6), 909-923.
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
- Eringen, A.C. (1974), "Theory of nonlocal thermoelasticity", Int. J. Eng. Sci., 12(12), 1063-1077. https://doi.org/10.1016/0020-7225(74)90033-0.
- Eringen, A.C. (1991), "Memory-dependent nonlocal electromagnetic elastic solids and superconductivity", J. Math. Phys., 32(3), 787-796. https://doi.org/10.1063/1.529372.
- Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer, New York.
- Eringen, A.C. and Suhubi, E.S. (1964a), "Nonlinear theory of micro-elastic solids I", Int. J. Eng. Sci., 2(2), 189-203. https://doi.org/10.1016/0020-7225(64)90004-7.
- Eringen, A.C. and Edelen, D. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
- Eringen, A.C. and Wegner, J.L. (2003), "Nonlocal continuum field theories", Appl. Mech. Rev., 56(2), B20-B22. https://doi.org/10.1007/BF00251544.
- Eringen, C. (2014), Foundations of Micropolar Thermoelasticity: Course Held at the Department for Mechanics of Deformable Bodies July 1970, Vol. 23, Springer.
- Ezzat, M., Zakaria, M. and Abdel-Bary, A. (2004), "Generalized thermoelasticity with temperature dependent modulus of elasticity under three theories", J. Appl. Math. Comput., 14(3), 193-212. https://doi.org/10.1007/BF02936108.
- Khurana, A. and Tomar, S.K. (2017), "Rayleigh-type waves in nonlocal micropolar elastic solid half-space", Ultrasonic., 73, 162-168. https://doi.org/10.1016/j.ultras.2016.09.005.
- Kumar, R. and Rani, L. (2004), "Deformation due to mechanical and thermal sources in generalised orthorhombic thermoelastic material", Sadhana, 29(10), 429-447. https://doi.org/10.1007/BF02703254.
- Lata, P. (2018), "Reflection and refraction of plane waves in layered nonlocal elastic and anisotropic thermoelastic medium", Struct. Eng. Mech., 66(1), 113-124. https://doi.org/10.12989/sem.2018.66.1.113.
- Lata, P. (2020), "Time harmonic interactions in non local thermoelastic solid with two temperatures", Struct. Eng. Mech., 74(3), 341-350. https://doi.org/10.12989/sem.2020.74.3.341.
- Marin, M., Baleanu, D. and Vlase, S. (2017), "Effect of microtemperatures for micropolar thermoelastic bodies", Struct. Eng. Mech., 61(3), 381-387. https://doi.org/10.12989/sem.2017.61.3.381.
- Marin, M., Chirila, A., Ochsner, A. and Vlase, S. (2019), "About finite energy solutions in thermoelasticity of micropolar bodies with voids", Bound. Value Prob., 18, 1-14. https://doi.org/10.1186/s13661-019-1203-3.
- Montanaro, A. (1999), "On singular surfaces in isotropic linear thermoelasticity with initial stress", J. Acoust. Soc. Am., 106(3), 1586-1588. https://doi.org/10.1121/1.427154.
- Nowacki, W. (1966), "Couple stresses in the theory of thermoelasticity III", Bull. Acad. Polon. Sci. Ser. Sci. Technol., 14, 801-809. https://doi.org/10.1007/978-3-7091-5581-3_17.
- Othman, M.I.A. and Abbas, I.A. (2023), "2-D Problem of micropolar thermoelastic rotating medium with eigenvalue approach under the three-phase-lag model", Wave. Random Complex Media, 33(2), 280-295. https://doi.org/10.1080/17455030.2021.1879405.
- Othman, M.I.A. and Abd-Elaziz, E.M. (2017), "Effect of rotation and gravitational on a micropolar magneto-thermoelastic medium with Dual-phase-lag model", Microsyst. Tech., 23(10), 4979-4987. https://doi.org/10.1007/s00542-017-3295-y.
- Saeed, T. and Abbas, I. (2022), "Effects of the nonlocal thermoelastic model in a thermoelastic nanoscale material", Math., 10(2), 284. https://doi.org/10.3390/math10020284.
- Said, S.M. (2022), "A viscoelastic-micropolar solid with voids and microtemperatures under the effect of the gravity field", Geomech. Eng., 31(2), 159-166. https://doi.org/10.12989/gae.2022.31.2.159.
- Said, S.M. (2023), "A novel model of a nonlocal porous thermoelastic solid with temperature-dependent properties using an eigenvalue approach", Geomech. Eng., 32(2), 137-144. https://doi.org/10.12989/gae.2023.32.2.137.
- Sarkar, N., Mondal, S. and Othman, M.I.A. (2020), "Effect of the laser pulse on transient waves in a non-local thermoelastic medium under Green-Naghdi theory", Struct. Eng. Mech., 74(4), 471-479. https://doi.org/10.12989/sem.2020.74.4.471.
- Schoenberg, M. and Censor, D. (1973), "Elastic waves in rotating media", Quart. Appl. Math., 31(1), 115-125. https://doi.org/10.1090/qam/99708.
- Shaw, S. and Mukhopadhyay, B. (2013), "Moving heat source response in micropolar half-space with two-temperature theory", Contin. Mech. Thermodyn., 25(3), 523-535. https://doi.org/10.1007/s00161-012-0284-3.
- Singh, B. and Bijarnia, R. (2021), "Nonlocal effects on propagation of waves in a generalized thermoelastic solid half space", Struct. Eng. Mech., 77(4), 473-479. https://doi.org/10.12989/sem.2021.77.4.473.
- Suhubi, E.S. and Eringen, A.C. (1964b), "Nonlinear theory of micro-elastic solids II", Int. J. Eng. Sci., 2(4), 389-404. https://doi.org/10.1016/0020-7225(64)90017-5.
- Tauchert, T.R., Claus, Jr W.D. and Ariman, T. (1968), "The linear theory of micropolar thermoelasticity", Int. J. Eng. Sci., 6(1), 37-47. https://doi.org/10.1016/0020-7225(68)90037-2.
- Yu, Y.J., Tian, X.G. and Xiong, Q.L. (2016), "Nonlocal thermoelasticity based on nonlocal heat conduction and nonlocal elasticity", Eur. J. Mech.-A/Solid., 60, 238-253. https://doi.org/10.1016/j.euromechsol.2016.08.004.
- Zenkour A.M. and Abouelregal, A.E. (2014), "Effect of harmonically varying heat on FG nanobeams in the context of a nonlocal two-temperature thermoelasticity theory", Eur. J. Comput. Mech., 23(1-2), 1-14. https://doi.org/10.1080/17797179.2014.882141.
- Zhang, P., Wei, P. and Tang, Q. (2015), "Reflection of micropolar elastic waves at the non-free surface of a micropolar elastic half-space", Acta Mechanica, 226(9), 2925-2937. https://doi.org/10.1007/s00707-015-1346-y.