DOI QR코드

DOI QR Code

On the measurement of the transient dynamics of the nanocomposites reinforced concrete systems as the main part of bridge construction

  • Shuzhen Chen (School of Civil Engineering, Chongqing Vocational Institute of Engineering) ;
  • Hou Chang-ze (Chongqing Shangshan Real Estate Co., Ltd) ;
  • Gongxing Yan (School of Intelligent Construction, Luzhou Vocational and Technical College) ;
  • M. Atif (Department of Physics and Astronomy, College of Science, King Saud University)
  • Received : 2023.03.17
  • Accepted : 2024.05.05
  • Published : 2024.05.25

Abstract

Nanocomposite-reinforced concrete systems have gained increasing attention in bridge construction due to their enhanced mechanical properties and durability. Understanding the transient dynamics of these advanced materials is crucial for ensuring the structural integrity and performance of bridge infrastructure under dynamic loading conditions. This paper presents a comprehensive study of the measurement techniques employed for assessing the transient dynamics of nanocompositereinforced concrete systems in bridge construction applications. A numerical method, including modal analysis are discussed in detail, highlighting their advantages, limitations, and applications. Additionally, recent advancements in sensor technologies, data acquisition systems, and signal processing techniques for capturing and analyzing transient responses are explored. The paper also addresses challenges and opportunities in the measurement of transient dynamics, such as the characterization of nanocomposite-reinforced concrete materials, the development of accurate numerical models, and the integration of advanced sensing technologies into bridge monitoring systems. Through a critical review of existing literature and case studies, this paper aims to provide insights into best practices and future directions for the measurement of transient dynamics in nanocompositereinforced concrete systems, ultimately contributing to the design, construction, and maintenance of resilient and sustainable bridge infrastructure.

Keywords

Acknowledgement

Researchers Supporting Project number (RSP2024R397), King Saud University, Riyadh, Saudi Arabia.

References

  1. AAdeniyi, A.G., Abdulkareem, S.A., Iwuozor, K.O., Abdulkareem, M.T., Adeyanju, C.A., Emenike, E.C., ... & Akande, O.J. (2023), "Mechanical and microstructural properties of expanded polyethylene powder/mica filled hybrid polystyrene composites", Mech. Adv. Mater. Struct., 30, 2610-2619. https://doi.org/10.1080/15376494.2022.2059822.
  2. Ahmadi, I., Sladek, J. and Sladek, V. (2023), "Size dependent free vibration analysis of 2D-functionally graded curved nanobeam by meshless method", Mech. Adv. Mater. Struct., 1-22. https://doi.org/10.1080/15376494.2023.2195400.
  3. Chen, C., Yang, H., Song, K., Liang, D., Zhang, Y. and Ni, J. (2023), "Dissolution feature differences of carbonate rock within hydro-fluctuation belt located in the Three Gorges Reservoir Area", Eng. Geol., 327, 107362. https://doi.org/10.1016/j.enggeo.2023.107362.
  4. Chen, F., Zhang, H., Li, Z., Luo, Y., Xiao, X. and Liu, Y. (2024), "Residual stresses effects on fatigue crack growth behavior of rib-to-deck double-sided welded joints in orthotropic steel decks", Adv. Struct. Eng., 27(1), 35-50. https://doi.org/10.1177/13694332231213462.
  5. Cui, W., Caracoglia, L., Zhao, L. and Ge, Y. (2023), "Examination of occurrence probability of vortex-induced vibration of longspan bridge decks by Fokker-Planck-Kolmogorov equation", Struct. Saf., 105, 102369. https://doi.org/10.1016/j.strusafe.2023.102369.
  6. Deng, E.F., Wang, Y.H., Zong, L., Zhang, Z. and Zhang, J.F. (2024), "Seismic behavior of a novel liftable connection for modular steel buildings: Experimental and numerical studies", Thin Wall. Struct., 197, 111563. https://doi.org/10.1016/j.tws.2024.111563.
  7. Du, M., Liu, J., Ye, W., Yang, F. and Lin, G. (2022), "A new semianalytical approach for bending, buckling and free vibration analyses of power law functionally graded beams", Struct. Eng. Mech., 81, 179-194. https://doi.org/10.12989/sem.2022.81.2.179.
  8. Dugundji, J., Dowell, E. and Perkin, B. (1963), "Subsonic flutter of panels on continuous elastic foundations", AIAA J., 1, 1146-1154. https://doi.org/10.2514/3.1738.
  9. Feng, Y., Mohammadi, M., Wang, L., Rashidi, M. and Mehrabi, P. (2021), "Application of artificial intelligence to evaluate the fresh properties of self-consolidating concrete", Mater., 14, 4885. https://doi.org/10.3390/ma14174885.
  10. Ferdous, W., Bai, Y., Almutairi, A.D., Satasivam, S. and Jeske, J. (2018), "Modular assembly of water-retaining walls using GFRP hollow profiles: Components and connection performance", Compos. Struct., 194, 1-11. https://doi.org/10.1016/j.compstruct.2018.03.074.
  11. Ferdous, W., Bai, Y., Ngo, T.D., Manalo, A. and Mendis, P. (2019), "New advancements, challenges and opportunities of multistorey modular buildings-A state-of-the-art review", Eng. Struct., 183, 883-893. https://doi.org/10.1016/j.engstruct.2019.01.061.
  12. Ferdous, W., Manalo, A., Aravinthan, T. and Van Erp, G. (2016), "Properties of epoxy polymer concrete matrix: Effect of resinto-filler ratio and determination of optimal mix for composite railway sleepers", Constr. Build. Mater., 124, 287-300. https://doi.org/10.1016/j.conbuildmat.2016.07.111.
  13. Firouzianhaji, A., Usefi, N., Samali, B. and Mehrabi, P. (2021), "Shake table testing of standard cold-formed steel storage rack", Appl. Sci., 11, 1821. https://doi.org/10.3390/app11041821.
  14. Guo, H., Du, X. and Zur, K.K. (2021), "On the dynamics of rotating matrix cracked FG-GPLRC cylindrical shells via the element-free IMLS-Ritz method", Eng. Anal. Bound. Elem., 131, 228-239. https://doi.org/10.1016/j.enganabound.2021.06.005.
  15. Guo, H., Ouyang, X., Zur, K.K. and Wu, X. (2021), "Meshless numerical approach to flutter analysis of rotating pre-twisted nanocomposite blades subjected to supersonic airflow", Eng. Anal. Bound. Elem., 132, 1-11. https://doi.org/10.1016/j.enganabound.2021.07.008.
  16. Guo, H., Yang, T., Zur, K.K. and Reddy, J.N. (2021), "On the flutter of matrix cracked laminated composite plates reinforced with graphene nanoplatelets", Thin Wall. Struct., 158, 107161. https://doi.org/10.1016/j.tws.2020.107161.
  17. Han, S., Zheng, D., Mehdizadeh, B., Nasr, E.A., Khandaker, M. U., Salman, M. and Mehrabi, P. (2023), "Sustainable design of self-consolidating green concrete with partial replacements for cement through neural-network and fuzzy technique", Sustain., 15, 4752. https://doi.org/10.3390/su15064752.
  18. Han, S., Zhu, Z., Mortazavi, M., El-Sherbeeny, A.M. and Mehrabi, P. (2023), "Analytical assessment of the structural behavior of a specific composite floor system at elevated temperatures using a newly developed hybrid intelligence method", Build., 13, 799. https://doi.org/10.3390/buildings13030799.
  19. He, H., Shi, J., Yu, S., Yang, J., Xu, K., He, C. and Li, X. (2024), "Exploring green and efficient zero-dimensional carbon-based inhibitors for carbon steel: From performance to mechanism", Constr. Build. Mater., 411, 134334. https://doi.org/10.1016/j.conbuildmat.2023.134334.
  20. He, H., Shuang, E., Ai, L., Wang, X., Yao, J., He, C. and Cheng, B. (2023), "Exploiting machine learning for controlled synthesis of carbon dots-based corrosion inhibitors", J. Clean. Prod., 419, 138210. https://doi.org/10.1016/j.jclepro.2023.138210.
  21. He, L., Valocchi, A.J. and Duarte, C.A. (2023), "A transient global-local generalized FEM for parabolic and hyperbolic PDEs with multi-space/time scales", J. Comput. Phys., 488, 112179. https://doi.org/10.1016/j.jcp.2023.112179.
  22. He, L., Valocchi, A.J. and Duarte, C.A. (2024), "An adaptive global-local generalized FEM for multiscale advection-diffusion problems", Comput. Meth. Appl. Mech. Eng., 418, 116548. https://doi.org/10.1016/j.cma.2023.116548.
  23. Horne, J., Beddingfield, E., Knapp, M., Mitchell, S., Crawford, L., Mills, S.B., ... & Summers, R.M. (2020), "Caffeine and theophylline inhibit β-galactosidase activity and reduce expression in Escherichia coli", ACS Omega, 5, 32250-32255. https://doi.org/10.1021/acsomega.0c03909.
  24. Hu, D., Li, Y., Yang, X., Liang, X., Zhang, K. and Liang, X. (2023), "Experiment and application of NATM tunnel deformation monitoring based on 3D laser scanning", Struct. Control Hlth. Monit., 2023, Article ID 3341788. https://doi.org/10.1155/2023/3341788.
  25. Hu, D., Sun, H., Mehrabi, P., Ali, Y.A. and Al-Razgan, M. (2023), "Application of artificial intelligence technique in optimization and prediction of the stability of the walls against wind loads in building design", Mech. Adv. Mater. Struct., 1-18. https://doi.org/10.1080/15376494.2023.2206208.
  26. Hu, S., Zhong, R., Wang, Q. and Bin, Q. (2021), "Vibration analysis of closed laminate conical, cylindrical shells and annular plates using meshfree method", Eng. Anal. Bound. Elem., 133, 341-361. https://doi.org/10.1016/j.enganabound.2021.09.011.
  27. Huang, H., Huang, M., Zhang, W. and Yang, S. (2021), "Experimental study of predamaged columns strengthened by HPFL and BSP under combined load cases", Struct. Infrastr. Eng., 17, 1210-1227. https://doi.org/10.1080/15732479.2020.1801768.
  28. Huang, H., Huang, M., Zhang, W., Pospisil, S. and Wu, T. (2020), "Experimental investigation on rehabilitation of corroded RC columns with BSP and HPFL under combined loadings", J. Struct. Eng., 146, 04020157. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002725.
  29. Huang, H., Li, M., Zhang, W. and Yuan, Y. (2022), "Seismic behavior of a friction-type artificial plastic hinge for the precast beam-column connection", Arch. Civil Mech. Eng., 22, 201. https://doi.org/10.1007/s43452-022-00526-1.
  30. Huang, H., Yao, Y., Liang, C. and Ye, Y. (2022), "Experimental study on cyclic performance of steel-hollow core partially encased composite spliced frame beam", Soil Dyn. Earthq. Eng., 163, 107499. https://doi.org/10.1016/j.soildyn.2022.107499.
  31. Hughes, T.J., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Meth. Appl. Mech. Eng., 194, 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008.
  32. Jabbari, M., Karampour, S. and Eslami, M.R. (2013), "Steady state thermal and mechanical stresses of a poro-piezo-FGM hollow sphere", Meccanica., 48, 699-719. https://doi.org/10.1007/s11012-012-9625-3.
  33. Jin, G., Ye, T., Jia, X. and Gao, S. (2014), "A general Fourier solution for the vibration analysis of composite laminated structure elements of revolution with general elastic restraints", Compos. Struct., 109, 150-168. https://doi.org/10.1016/j.compstruct.2013.10.052.
  34. Kang, J.H. and Leissa, A.W. (2005), "Three-dimensional vibration analysis of thick hyperboloidal shells of revolution", J. Sound Vib., 282, 277-296. https://doi.org/10.1016/j.jsv.2004.02.031.
  35. Kaur, I., Lata, P. and Singh, K. (2022), "Thermoelastic damping in generalized simply supported piezo-thermo-elastic nanobeam", Struct. Eng. Mech., 81(1), 29-37. https://doi.org/10.12989/sem.2022.81.1.029.
  36. Khajehzadeh, M., Kalhor, A., Tehrani, M.S. and Jebeli, M. (2022), "Optimum design of retaining structures under seismic loading using adaptive sperm swarm optimization", Struct. Eng. Mech., 81(1), 93-102. https://doi.org/10.12989/sem.2022.81.1.093.
  37. Kiani, Y. (2017), "Free vibration of FG-CNT reinforced composite spherical shell panels using Gram-Schmidt shape functions", Compos. Struct., 159, 368-381. https://doi.org/10.1016/j.compstruct.2016.09.079.
  38. Kornecki, A., Dowell, E.H. and O'brien, J. (1976), "On the aeroelastic instability of two-dimensional panels in uniform incompressible flow", J. Sound Vib., 47, 163-178. https://doi.org/10.1016/0022-460X(76)90715-X.
  39. Kou, S.C. and Poon, C.S. (2013), "A novel polymer concrete made with recycled glass aggregates, fly ash and metakaolin", Constr. Build. Mater., 41, 146-151. https://doi.org/10.1016/j.conbuildmat.2012.11.083.
  40. Li, T., Shi, H., Bai, X., Zhang, K. and Bin, G. (2023), "Early performance degradation of ceramic bearings by a twin-driven model", Mech. Syst. Signal Pr., 204, 110826. https://doi.org/10.1016/j.ymssp.2023.110826.
  41. Librescu, L. (1965), "Aeroelastic stability of orthotropic heterogeneous thin panels in vicinity of flutter critical boundary. 1. Simply supported panels", J. Mecanique, 4, 51.
  42. Liu, B., Yang, H. and Karekal, S. (2020), "Effect of water content on argillization of mudstone during the tunnelling process", Rock Mech. Rock Eng., 53, 799-813. https://doi.org/10.1007/s00603-019-01947-w.
  43. Liu, C., Cui, J., Zhang, Z., Liu, H., Huang, X. and Zhang, C. (2021), "The role of TBM asymmetric tail-grouting on surface settlement in coarse-grained soils of urban area: Field tests and FEA modelling", Tunnel. Undergr. Space Technol., 111, 103857. https://doi.org/10.1016/j.tust.2021.103857.
  44. Liu, J., Mohammadi, M., Zhan, Y., Zheng, P., Rashidi, M. and Mehrabi, P. (2021), "Utilizing artificial intelligence to predict the superplasticizer demand of self-consolidating concrete incorporating pumice, slag, and fly ash powders", Mater., 14, 6792. https://doi.org/10.3390/ma14226792.
  45. Liu, T., Feng, P., Bai, Y., Bai, S., Yang, J.Q. and Zhao, F. (2024), "Flexural performance of curved-pultruded GFRP arch beams subjected to varying boundary conditions", Eng. Struct., 308, 117962. https://doi.org/10.1016/j.engstruct.2024.117962.
  46. Long, X., Mao, M.H., Su, T.X., Su, Y.T. and Tian, M.K. (2023), "Machine learning method to predict dynamic compressive response of concrete-like material at high strain rates", Def. Technol., 23, 100-111. https://doi.org/10.1016/j.dt.2022.02.003.
  47. Lu, D., Meng, F., Zhou, X., Zhuo, Y., Gao, Z. and Du, X. (2023), "A dynamic elastoplastic model of concrete based on a modeling method with environmental factors as constitutive variables", J. Eng. Mech., 149, 04023102. https://doi.org/10.1061/jenmdt.emeng-7206.
  48. Lu, D., Zhou, X., Du, X. and Wang, G. (2019), "A 3D fractional elastoplastic constitutive model for concrete material", Int. J. Solid. Struct., 165, 160-175. https://doi.org/10.1016/j.ijsolstr.2019.02.004.
  49. Lu, D., Zhou, X., Du, X. and Wang, G. (2020), "3D dynamic elastoplastic constitutive model of concrete within the framework of rate-dependent consistency condition", J. Eng. Mech., 146, 04020124. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001854.
  50. Luo, Y., Liu, X., Chen, F., Zhang, H. and Xiao, X. (2023), "Numerical simulation on crack-inclusion interaction for rib-todeck welded joints in orthotropic steel deck", Metal., 13, 1402. https://doi.org/10.3390/met13081402.
  51. Mehrabi, P., Honarbari, S., Rafiei, S., Jahandari, S. and Alizadeh Bidgoli, M. (2021), "Seismic response prediction of FRC rectangular columns using intelligent fuzzy-based hybrid metaheuristic techniques", J. Ambient Intel. Humaniz. Comput., 12, 10105-10123. https://doi.org/10.1007/s12652-020-02776-4.
  52. Mehrabi, P., Shariati, M., Kabirifar, K., Jarrah, M., Rasekh, H., Trung, N.T., ... & Jahandari, S. (2021), "Effect of pumice powder and nano-clay on the strength and permeability of fiberreinforced pervious concrete incorporating recycled concrete aggregate", Constr. Build. Mater., 287, 122652. https://doi.org/10.1016/j.conbuildmat.2021.122652.
  53. Mock, M.B., Zhang, S., Pakulski, K., Hutchison, C., Kapperman, M., Dreischarf, T. and Summers, R.M. (2024), "Production of 1- methylxanthine via the biodegradation of theophylline by an optimized Escherichia coli strain", J. Biotechnol., 379, 25-32. https://doi.org/10.1016/j.jbiotec.2023.11.005.
  54. Mock, M.B., Zhang, S., Pniak, B., Belt, N., Witherspoon, M. and Summers, R.M. (2021), "Substrate promiscuity of the NdmCDE N7-demethylase enzyme complex", Biotechnol. Note., 2, 18-25. https://doi.org/10.1016/j.biotno.2021.05.001.
  55. Moradi-Dastjerdi, R., Foroutan, M., Pourasghar, A. and Sotoudeh- Bahreini, R. (2013), "Static analysis of functionally graded carbon nanotube-reinforced composite cylinders by a mesh-free method", J. Reinf. Plast. Compos., 32, 593-601. https://doi.org/10.1177/0731684413476353.
  56. Msekh, M.A., Cuong, N.H., Zi, G., Areias, P., Zhuang, X. and Rabczuk, T. (2018), "Fracture properties prediction of clay/epoxy nanocomposites with interphase zones using a phase field model", Eng. Fract. Mech., 188, 287-299. https://doi.org/10.1016/j.engfracmech.2017.08.002.
  57. Nguyen, T.N., Ngo, T.D. and Nguyen-Xuan, H. (2017), "A novel three-variable shear deformation plate formulation: Theory and Isogeometric implementation", Comput. Meth. Appl. Mech. Eng., 326, 376-401. https://doi.org/10.1016/j.cma.2017.07.024.
  58. Nguyen, T.N., Thai, C.H. and Nguyen-Xuan, H. (2016), "On the general framework of high order shear deformation theories for laminated composite plate structures: A novel unified approach", Int. J. Mech. Sci., 110, 242-255. https://doi.org/10.1016/j.ijmecsci.2016.01.012.
  59. Qiu, Y. (2019), "Estimation of tail risk measures in finance: Approaches to extreme value mixture modeling", Doctoral Dissertation, Johns Hopkins University.
  60. Qiu, Y. and Wang, J. (2024), "A machine learning approach to credit card customer segmentation for economic stability", Proceedings of the 4th International Conference on Economic Management and Big Data Applications, ICEMBDA 2023, October, Tianjin.
  61. She, A., Wang, L., Peng, Y. and Li, J. (2023,), "Structural reliability analysis based on improved wolf pack algorithm AKSS", Struct., 57, 105289. https://doi.org/10.1016/j.istruc.2023.105289.
  62. Shen, M., Wang, Q., Wang, R. and Guan, X. (2022), "Vibration analysis of rotating functionally graded graphene platelet reinforced composite shaft-disc system under various boundary conditions", Eng. Anal. Bound. Elem., 144, 380-398. https://doi.org/10.1016/j.enganabound.2022.08.030.
  63. Shi, J., Zhao, B., Tu, L., Xin, Q., Xie, Z., Zhong, N. and Lu, X. (2024), "Transient lubrication analysis of journal-thrust coupled bearing considering time-varying loads and thermal-pressure coupled effect", Tribol. Int., 194, 109502. https://doi.org/10.1016/j.triboint.2024.109502.
  64. Shi, M., Hu, W., Li, M., Zhang, J., Song, X. and Sun, W. (2023), "Ensemble regression based on polynomial regression-based decision tree and its application in the in-situ data of tunnel boring machine", Mech. Syst. Signal Pr., 188, 110022. https://doi.org/10.1016/j.ymssp.2022.110022.
  65. Shi, M.L., Lv, L. and Xu, L. (2023), "A multi-fidelity surrogate model based on extreme support vector regression: Fusing different fidelity data for engineering design", Eng. Comput., 40, 473-493. https://doi.org/10.1108/EC-10-2021-0583.
  66. Shu, Z., Ning, B., Chen, J., Li, Z., He, M., Luo, J. and Dong, H. (2023), "Reinforced moment-resisting glulam bolted connection with coupled long steel rod with screwheads for modern timber frame structures", Earthq. Eng. Struct. Dyn., 52, 845-864. https://doi.org/10.1002/eqe.3789.
  67. Sobhani, E. and Avcar, M. (2022), "Natural frequency analysis of imperfect GNPRN conical shell, cylindrical shell, and annular plate structures resting on Winkler-Pasternak Foundations under arbitrary boundary conditions", Eng. Anal. Bound. Elem., 144, 145-164. https://doi.org/10.1016/j.enganabound.2022.08.018.
  68. Soltanieh, G., Yam, M.C., Zhang, J.Z. and Ke, K. (2022), "Closedform solution for the buckling behavior of the delaminated FRP plates with a rectangular hole using super-elastic SMA stitches", Struct. Eng. Mech., 81, 39-50. https://doi.org/10.12989/sem.2022.81.1.039.
  69. Song, K., Yang, H., Liang, D., Chen, L. and Jaboyedoff, M. (2024), "Step-like displacement prediction and failure mechanism analysis of slow-moving reservoir landslide", J. Hydrol., 628, 130588. https://doi.org/10.1016/j.jhydrol.2023.130588.
  70. Su, Y., Wang, J., Li, D., Wang, X., Hu, L., Yao, Y. and Kang, Y. (2023), "End-to-end deep learning model for underground utilities localization using GPR", Autom. Constr., 149, 104776. https://doi.org/10.1016/j.autcon.2023.104776.
  71. Sun, L., Wang, C., Zhang, C., Yang, Z., Li, C. and Qiao, P. (2023), "Experimental investigation on the bond performance of sea sand coral concrete with FRP bar reinforcement for marine environments", Adv. Struct. Eng., 26, 533-546. https://doi.org/10.1177/13694332221131153.
  72. Taheri, E., Firouzianhaji, A., Mehrabi, P., Vosough Hosseini, B. and Samali, B. (2020), "Experimental and numerical investigation of a method for strengthening cold-formed steel profiles in bending", Appl. Sci., 10, 3855. https://doi.org/10.3390/app10113855.
  73. Taheri, E., Firouzianhaji, A., Usefi, N., Mehrabi, P., Ronagh, H. and Samali, B. (2019), "Investigation of a method for strengthening perforated cold-formed steel profiles under compression loads", Appl. Sci., 9, 5085. https://doi.org/10.3390/app9235085.
  74. Taheri, E., Mehrabi, P., Rafiei, S. and Samali, B. (2021), "Numerical evaluation of the upright columns with partial reinforcement along with the utilisation of neural networks with combining feature-selection method to predict the load and displacement", Appl. Sci., 11, 11056. https://doi.org/10.3390/app112211056.
  75. Talebi, H., Silani, M., Bordas, S.P., Kerfriden, P. and Rabczuk, T. (2014), "A computational library for multiscale modeling of material failure", Comput. Mech., 53, 1047-1071. https://doi.org/10.1007/s00466-013-0948-2.
  76. Thai, C.H., Kulasegaram, S., Tran, L.V. and Nguyen-Xuan, H. (2014), "Generalized shear deformation theory for functionally graded isotropic and sandwich plates based on isogeometric approach", Comput. Struct., 141, 94-112. https://doi.org/10.1016/j.compstruc.2014.04.003.
  77. Toghroli, A., Mehrabi, P., Shariati, M., Trung, N.T., Jahandari, S. and Rasekh, H. (2020), "Evaluating the use of recycled concrete aggregate and pozzolanic additives in fiber-reinforced pervious concrete with industrial and recycled fibers", Constr. Build. Mater., 252, 118997. https://doi.org/10.1016/j.conbuildmat.2020.118997.
  78. Tornabene, F. and Viola, E. (2008), "2-D solution for free vibrations of parabolic shells using generalized differential quadrature method", Eur. J. Mech.-A/Solid., 27, 1001-1025. https://doi.org/10.1016/j.euromechsol.2007.12.007.
  79. Wei, J., Ying, H., Yang, Y., Zhang, W., Yuan, H. and Zhou, J. (2023), "Seismic performance of concrete-filled steel tubular composite columns with ultra high performance concrete plates", Eng. Struct., 278, 115500. https://doi.org/10.1016/j.engstruct.2022.115500.
  80. Wen, F., Huang, X., Zhou, H., Wei, Z., Chen, Y. and Huang, W. (2022), "Coupled Newmark beta and GDQ methods with a hybrid adaptive neuro-fuzzy for electromechanical energy absorption of microsystem", Eng. Anal. Bound. Elem., 140, 356-370. https://doi.org/10.1016/j.enganabound.2022.04.016.
  81. Wu, J., Yang, Y., Mehrabi, P. and Nasr, E.A. (2023), "Efficient machine-learning algorithm applied to predict the transient shock reaction of the elastic structure partially rested on the viscoelastic substrate", Mech. Adv. Mater. Struct., 1-25. https://doi.org/10.1080/15376494.2023.2183289.
  82. Wu, Y., Wang, X., Fan, Y., Shi, J., Luo, C. and Wang, X. (2024), "A study on the ultimate span of a concrete-filled steel tube arch bridge", Build., 14, 896. https://doi.org/10.3390/buildings14040896.
  83. Xia, D., Alexander, A.K., Isbell, A., Zhang, S., Ou, J. and Liu, X. M. (2017), "Establishing a co-culture system for Clostridium cellulovorans and Clostridium aceticum for high efficiency biomass transformation", J. Sci. Heal. Univ. Ala., 14, 8-13.
  84. Yang, B., Kitipornchai, S., Yang, Y.F. and Yang, J. (2017), "3D thermo-mechanical bending solution of functionally graded graphene reinforced circular and annular plates", Appl. Math. Model., 49, 69-86. https://doi.org/10.1016/j.apm.2017.04.044.
  85. Yang, H., Chen, C., Ni, J. and Karekal, S. (2023), "A hyperspectral evaluation approach for quantifying salt-induced weathering of sandstone", Sci. Total Environ., 885, 163886. https://doi.org/10.1016/j.scitotenv.2023.163886.
  86. Yang, H., Ni, J., Chen, C. and Chen, Y. (2023), "Weathering assessment approach for building sandstone using hyperspectral imaging technique", Heritage Sci., 11, 70. https://doi.org/10.1186/s40494-023-00914-7.
  87. Yang, H., Song, K. and Zhou, J. (2022), "Automated recognition model of geomechanical information based on operational data of tunneling boring machines", Rock Mech. Rock Eng., 1-18. https://doi.org/10.1007/s00603-021-02723-5.
  88. Yao, X., Lyu, X., Sun, J., Wang, B., Wang, Y., Yang, M., ... & Wang, X. (2023), "AI-based performance prediction for 3Dprinted concrete considering anisotropy and steam curing condition", Constr. Build. Mater., 375, 130898. https://doi.org/10.1016/j.conbuildmat.2023.130898.
  89. Zenkour, A. (2007), "Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded thick rectangular plate", Arch. Appl. Mech., 77, 197-214. https://doi.org/10.1007/s00419-006-0084-y.
  90. Zhang, W., Zhang, S., Wei, J. and Huang, Y. (2024), "Flexural behavior of SFRC-NC composite beams: An experimental and numerical analytical study", Struct., 60, 105823. https://doi.org/10.1016/j.istruc.2023.105823.
  91. Zhang, Z., Li, Y., Wu, H., Zhang, H., Wu, H., Jiang, S. and Chai, G. (2020), "Mechanical analysis of functionally graded graphene oxide-reinforced composite beams based on the firstorder shear deformation theory", Mech. Adv. Mater. Struct., 27, 3-11. https://doi.org/10.1080/15376494.2018.1444216.
  92. Zhao, Y., Dai, W., Wang, Z. and Ragab, A.E. (2024), "Application of computer simulation to model transient vibration responses of GPLs reinforced doubly curved concrete panel under instantaneous heating", Mater. Today Commun., 38, 107949. https://doi.org/10.1016/j.mtcomm.2023.107949.
  93. Zur, K.K. (2019), "Free vibration analysis of discrete-continuous functionally graded circular plate via the Neumann series method", Appl. Math. Model., 73, 166-189. https://doi.org/10.1016/j.apm.2019.02.047.