참고문헌
- Abderezak, R., Daouadji, T.H. and Tayeb, B. (2023), "Composite aluminum-slab RC beam bonded by a prestressed hybrid carbon-glass composite material", Struct. Eng. Mech., 85(5), 573-592. https://doi.org/10.12989/sem.2023.85.5.573.
- Alimoradi, H., Eskandari, E., Pourbagian, M. and Shams, M. (2022), "A parametric study of subcooled flow boiling of Al2O3/water nanofluid using numerical simulation and artificial neural networks", Nanosc. Microsc. Thermophys. Eng., 26(2-3), 129-159. https://doi.org/10.1080/15567265.2022.2108949.
- Aluko, O., Gowtham, S. and Odegard, G.M. (2017), "Multiscale modeling and analysis of graphene nanoplatelet/carbon fiber/epoxy hybrid composite", Compos. Part B: Eng., 131, 82-90. https://doi.org/10.1016/j.compositesb.2017.07.075.
- Alzabeebee, S., Dhahir, M.K. and Keawsawasvong, S. (2022), "Predictive model for the shear strength of concrete beams reinforced with longitudinal FRP bars", Struct. Eng. Mech., 84(2), 143-154. https://doi.org/10.12989/sem.2022.84.2.143.
- Askarnia, R., Fardi, S.R., Sobhani, M. and Staji, H. (2021), "Ternary hydroxyapatite/chitosan/graphene oxide composite coating on AZ91D magnesium alloy by electrophoretic deposition", Ceram. Int., 47(19), 27071-27081. https://doi.org/10.1016/j.ceramint.2021.06.120.
- Bratei, A.A. and Stefan-van Staden, R.I. (2024), "The importance of KRAS quantification for a clinicopathological characterization in colorectal cancer patients", Medinformat., 1(1), 20-26. https://doi.org/10.47852/bonviewMEDIN32021546.
- Cho, J., Luo, J.J. and Daniel, I.M. (2007), "Mechanical characterization of graphite/epoxy nanocomposites by multi-scale analysis", Compos. Sci. Technol., 67(11-12), 2399-2407. https://doi.org/10.1016/j.compscitech.2007.01.006.
- Corcione, C.E. and Maffezzoli, A. (2013), "Transport properties of graphite/epoxy composites: Thermal, permeability and dielectric characterization", Polym. Test., 32(5), 880-888. https://doi.org/10.1016/j.polymertesting.2013.03.023.
- Cortes, A., Romate, X.F.S., Jimenez-Suarez, A., Campo, M., Prolongo, M.G., Urena, A. and Prolongo, S.G. (2020), "3D printed anti-icing and de-icing system based on CNT/GNP doped epoxy composites with self-curing and structural health monitoring capabilities", Smart Mater. Struct., 30(2), 025016. https://doi.org/10.1088/1361-665X/abd343.
- Cui, W., Zhao, L., Ge, Y. and Xu, K. (2024), "A generalized van der Pol nonlinear model of vortex-induced vibrations of bridge decks with multistability", Nonlin. Dyn., 112(1), 259-272. https://doi.org/10.1007/s11071-023-09047-9.
- Cui, X., Sun, S., Han, B., Yu, X., Ouyang, J., Zeng, S. and Ou, J. (2017), "Mechanical, thermal and electromagnetic properties of nanographite platelets modified cementitious composites", Compos. Part A: Appl. Sci. Manuf., 93, 49-58. https://doi.org/10.1016/j.compositesa.2016.11.017.
- Deng, Y.F., Zhang, N., Huang, T., Lei, Y.Z. and Wang, Y. (2022), "Constructing tubular/porous structures toward highly efficient oil/water separation in electrospun stereocomplex polylactide fibers via coaxial electrospinning technology", Appl. Surf. Sci., 573, 151619. https://doi.org/10.1016/j.apsusc.2021.151619.
- Eskandari, E., Alimoradi, H., Pourbagian, M. and Shams, M. (2022), "Numerical investigation and deep learning-based prediction of heat transfer characteristics and bubble dynamics of subcooled flow boiling in a vertical tube", Korean J. Chem. Eng., 39(12), 3227-3245. https://doi.org/10.1007/s11814-022-1267-0.
- Fayyadh, M.M. and Razak, H.A. (2022), "Experimental validation of dynamic based damage locating indices in RC structures", Struct. Eng. Mech., 84(2), 181-206. https://doi.org/10.12989/sem.2022.84.2.181.
- Ferreira, C.I., Bianchi, O., Oviedo, M.A.S., Oliveira, R.V.B.D. and Mauler, R.S. (2013), "Morphological, viscoelastic and mechanical characterization of polypropylene/exfoliated graphite nanocomposites", Polimeros, 23, 456-461. https://doi.org/10.4322/polimeros.2013.066
- Gan, L.L., Xu, J.Q. and She, G.L. (2023), "Wave propagation of graphene platelets reinforced metal foams circular plates", Struct. Eng. Mech., 85(5), 645-654. https://doi.org/10.12989/sem.2023.85.5.645.
- Gao, Y., Picot, O.T., Bilotti, E. and Peijs, T. (2017), "Influence of filler size on the properties of poly (lactic acid)(PLA)/graphene nanoplatelet (GNP) nanocomposites", Eur. Polym. J., 86, 117-131. https://doi.org/10.1016/j.eurpolymj.2016.10.045.
- Hiremath, V. and Shukla, D.K. (2016), "Effect of particle morphology on viscoelastic and flexural properties of epoxy-alumina polymer nanocomposites", Plast., Rub. Compos., 45(5), 199-206. https://doi.org/10.1080/14658011.2016.1159778.
- Hobiny, A.D. and Abbas, I.A. (2021), "Generalized thermo-elastic interaction in a fiber-reinforced material with spherical holes", Struct. Eng. Mech., 78(3), 297-303. https://doi.org/10.12989/sem.2021.78.3.297.
- Hotaling, N.A., Bharti, K., Kriel, H. and Simon Jr, C.G. (2015). DiameterJ: A validated open source nanofiber diameter measurement tool", Biomater., 61, 327-338. https://doi.org/10.1016/j.biomaterials.2015.05.015.
- Hu, M., Yang, Y., Yu, Y. and Xue, Y. (2022), "Flexural behavior and flexural capacity prediction of precast prestressed composite beams", Struct. Eng. Mech., 84(2), 225. https://doi.org/10.12989/sem.2022.84.2.225.
- Hua, Y., Li, F., Hu, N. and Fu, S.Y. (2022), "Frictional characteristics of graphene oxide-modified continuous glass fiber reinforced epoxy composite", Compos. Sci. Technol., 223, 109446. https://doi.org/10.1016/j.compscitech.2022.109446.
- Iranmanesh, A. and Kaveh, A. (1999), "Structural optimization by gradient-based neural networks", Int. J. Numer. Meth. Eng., 46(2), 297-311. https://doi.org/10.1002/(SICI)1097-0207(19990920)46:2%3C297::AID-NME679%3E3.0.CO,2-C.
- Jagadeesh, P., Puttegowda, M., Mavinkere Rangappa, S. and Siengchin, S. (2021), "Influence of nanofillers on biodegradable composites: A comprehensive review", Polym. Compos., 42(11), 5691-5711. https://doi.org/10.1002/pc.26291.
- Jiang, H., Xie, Y., Zhu, R., Luo, Y., Sheng, X., Xie, D. and Mei, Y. (2023), "Construction of polyphosphazene-functionalized Ti3C2TX with high efficient flame retardancy for epoxy and its synergetic mechanisms", Chem. Eng. J., 456, 141049. https://doi.org/10.1016/j.cej.2022.141049.
- Kalkan, I., Ceylan, E., Kartal, S. and Baran, M. (2021), "Deflections of reinforced concrete beams with transverse openings of different geometries", Struct. Eng. Mech., 80(3), 323-339. https://doi.org/10.12989/sem.2021.80.3.323.
- Katheria, A., Nayak, J. and Das, N.C. (2022), "A journey of thermoplastic elastomer nanocomposites for electromagnetic shielding applications: From bench to transitional research", Mater. Adv., 3(6), 2670-2691. https://doi.org/10.1039/D1MA00989C.
- Kaveh, A. and Bondarabady, H.R. (2004), "Wavefront reduction using graphs, neural networks and genetic algorithm", Int. J. Numer. Meth. Eng., 60(11), 1803-1815. https://doi.org/10.1002/nme.1023.
- Kaveh, A. and Khavaninzadeh, N. (2023), "Efficient training of two ANNs using four meta-heuristic algorithms for predicting the FRP strength", Struct., 52, 256-272. https://doi.org/10.1016/j.istruc.2023.03.178.
- Kaveh, A., Bahreininejad, A. and Mostafaei, H. (1999), "A hybrid graph-neural method for domain decomposition", Comput. Struct., 70(6), 667-674. https://doi.org/10.1016/S0045-7949(98)00209-0.
- Kaveh, A., Dadras Eslamlou, A., Javadi, S.M. and Geran Malek, N. (2021), "Machine learning regression approaches for predicting the ultimate buckling load of variable-stiffness composite cylinders", Acta Mechanica, 232, 921-931. https://doi.org/10.1007/s00707-020-02878-2.
- Kuester, S., Demarquette, N.R., Ferreira Jr, J.C., Soares, B.G. and Barra, G.M. (2017), "Hybrid nanocomposites of thermoplastic elastomer and carbon nanoadditives for electromagnetic shielding", Eur. Polym. J., 88, 328-339. https://doi.org/10.1016/j.eurpolymj.2017.01.023.
- Kumar, S., Singh, K.S.K. and Singh, K.K. (2022), "Data-driven modeling for predicting tribo-performance of graphene-incorporated glass-fabric reinforced epoxy composites using machine learning algorithms", Polym. Compos., 43(9), 6599-6610. https://doi.org/10.1002/pc.26974.
- Li, J., Sui, T., Dong, X., Gu, F., Su, N., Liu, J. and Xu, C. (2022), "Large eddy simulation studies of two-phase flow characteristics in the abrasive flow machining of complex flow ways with a cross-section of cycloidal lobes", Int. J. Hydromechatr., 5(2), 136-166. https://doi.org/10.1504/IJHM.2022.123131.
- Li, Y., Huang, X., Zeng, L., Li, R., Tian, H., Fu, X., ... & Zhong, W.H. (2019), "A review of the electrical and mechanical properties of carbon nanofiller-reinforced polymer composites", J. Mater. Sci., 54, 1036-1076. https://doi.org/10.1007/s10853-018-3006-9.
- Lin, Y., Chen, C., Ma, Z., Sabor, N., Wei, Y., Zhang, T., ... & Zhao, J. (2023), "Emulation of brain metabolic activities based on a dynamically controllable optical phantom", Cyborg Bionic Syst., 4, 0047. https://doi.org/10.34133/cbsystems.0047.
- Liu, T., Feng, P., Bai, Y., Bai, S., Yang, J.Q. and Zhao, F. (2024), "Flexural performance of curved-pultruded GFRP arch beams subjected to varying boundary conditions", Eng. Struct., 308, 117962. https://doi.org/10.1016/j.compstruct.2020.113111.
- Liu, X. and Wang, X. (2023), "Application of artificial intelligence for solving the engineering problems", Struct. Eng. Mech., 85(1), 15-27. https://doi.org/10.12989/sem.2023.85.1.015.
- Luo, X., Yang, G. and Schubert, D.W. (2022), "Electrically conductive polymer composite containing hybrid graphene nanoplatelets and carbon nanotubes: Synergistic effect and tunable conductivity anisotropy", Adv. Compos. Hybrid Mater., 1-13. https://doi.org/10.1007/s42114-021-00332-y.
- Marquez, B.Y., Realyvasquez-Vargas, A., Lopez-Esparza, N. and Ramos, C.E. (2024), "Application of ordinary least squares regression and neural networks in predicting employee turnover in the industry", Arch. Adv. Eng. Sci., 2(1), 30-36. https://doi.org/10.47852/bonviewAAES32021326.
- Mousavi, S.R., Estaji, S., Paydayesh, A., Arjmand, M., Jafari, S.H., Nouranian, S. and Khonakdar, H.A. (2022), "A review of recent progress in improving the fracture toughness of epoxy-based composites using carbonaceous nanofillers", Polym. Compos., 43(4), 1871-1886. https://doi.org/10.1002/pc.26518.
- Neto, R.P., Teles, D.V., Vieira, C.S. and Amorim, D.L. (2022), "Energy equivalent lumped damage model for reinforced concrete structures", Struct. Eng. Mech., 84(2), 285-293. https://doi.org/10.12989/sem.2022.84.2.285.
- Palaniyappan, K., SMN Mydin, R.B., Widera, D., Noordin, S.S., Harun, N.H., Wan Eddis Effendy, W.N., ... & Sreekantan, S. (2023), "Double-edged sword of biofouling potentials associated with haemocompatibility behaviour: titania nanotube arrays for medical implant surface technology", Beni-Suef Univ. J. Basic Appl. Sci., 12(1), 36. https://doi.org/10.1186/s43088-023-00363-y.
- Pan, S., Dai, Q., Safaei, B., Qin, Z. and Chu, F. (2021), "Damping characteristics of carbon nanotube reinforced epoxy nanocomposite beams", Thin Wall. Struct., 166, 108127. https://doi.org/10.1016/j.tws.2021.108127.
- Pan, Y., Yang, B., Jia, N., Yu, Y., Xu, X., Wang, Y., ... & Shi, Y. (2021), "Enhanced thermally conductive and thermomechanical properties of polymethyl methacrylate (PMMA)/graphene nanoplatelets (GNPs) nanocomposites for radiator of electronic components", Polym. Test., 101, 107237. https://doi.org/10.1016/j.polymertesting.2021.107237.
- Qian, W., Zhang, W., Wu, S., Hu, Y., Zhang, X., Hu, Q., ... & Tu, S. (2024), "In situ X-ray imaging and numerical modeling of damage accumulation in C/SiC composites at temperatures up to 1200℃", J. Mater. Sci. Technol., 197, 65-77. https://doi.org/10.1016/j.jmst.2024.01.069.
- Remond, Y., Ahzi, S., Baniassadi, M. and Garmestani, H. (2016), Applied RVE Reconstruction and Homogenization of Heterogeneous Materials, John Wiley & Sons.
- Rofooei, F. R., Kaveh, A. and Farahani, F. M. (2011), "Estimating the vulnerability of the concrete moment resisting frame structures using artificial neural networks", Int. J. Optim. Civil Eng., 1(3), 433-448.
- Saboori, A., Pavese, M., Badini, C. and Fino, P. (2017), "Development of Al-and Cu-based nanocomposites reinforced by graphene nanoplatelets: Fabrication and characterization", Front. Mater. Sci., 11, 171-181. https://doi.org/10.1007/s11706-017-0377-9.
- Saleem, N., Gao, J., Irfan, R., Almadhor, A., Rauf, H. T., Zhang, Y. and Kadry, S. (2023), "DeepCNN: spectro-temporal feature representation for speech emotion recognition", CAAI Trans. Intel. Technol., 8(2), 401-417. https://doi.org/10.1049/cit2.12233.
- Saminu, S., Xu, G., Zhang, S., Ab El Kader, I., Aliyu, H.A., Jabire, A.H., ... & Adamu, M.J. (2023), "Applications of artificial intelligence in automatic detection of epileptic seizures using EEG signals: A review", Artif. Intel. Appl., 1(1), 11-25. https://doi.org/10.47852/bonviewAIA2202297.
- Sellam, M., Kannan, K. and Natarajan, S. (2023), "A new stabilised curvature computation method using the level set function", Int. J. Hydromechatr., 6(4), 325-341. https://doi.org/10.1504/IJHM.2023.134339.
- Sharma, N., Kumar, S. and Singh, K.K. (2022), "Taguchi's DOE and artificial neural network analysis for the prediction of tribological performance of graphene nano-platelets filled glass fiber reinforced epoxy composites under the dry sliding condition", Tribol. Int., 172, 107580. https://doi.org/10.1016/j.triboint.2022.107580.
- She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
- Singiresu, S.R. (1995), Mechanical Vibrations, Addison Wesley, Boston, MA.
- Srivastava, S.K. and Manna, K. (2022), "Recent advancements in the electromagnetic interference shielding performance of nanostructured materials and their nanocomposites: A review", J. Mater. Chem. A, 10(14), 7431-7496. https://doi.org/10.1039/D1TA09522F.
- Taleghani, M.H., Khodadadi, S., Maddahian, R. and Mokhtari-Dizaji, M. (2023), "Enhancing the bubble collapse energy using the electrohydrodynamic force", Phys. Fluid., 35(5), 053316. https://doi.org/10.1063/5.0146491.
- Turkoglu, T. and Celik, S. (2023), "Synergistic effects of TiC/GNP strengthening on the mechanical and tribological properties of Al6061 matrix composites coupled with process optimization by artificial neural network", Proc. Inst. Mech. Eng., Part E: J. Proc. Mech. Eng., 09544089231172899. https://doi.org/10.1177/09544089231172899.
- Wanasinghe, D., Aslani, F., Ma, G. and Habibi, D. (2020), "Review of polymer composites with diverse nanofillers for electromagnetic interference shielding", Nanomater., 10(3), 541. https://doi.org/10.3390/nano10030541.
- Wang, C., Guo, L., Xia, Y., Zhang, C., Sang, X., Xu, C., ... & Zhang, X. (2024), "Flexural performance and damage evolution of multiple fiberglass-reinforced UV-CIPP composite materials--A view from mechanics and energy release", J. Mater. Res. Technol., 29, 3317-3339. https://doi.org/10.1016/j.jmrt.2024.02.051.
- Wang, G., Hao, Z., Li, H. and Zhang, B. (2023), "An activated variable parameter gradient-based neural network for time-variant constrained quadratic programming and its applications", CAAI Trans. Intel. Technol., 8(3), 670-679. https://doi.org/10.1049/cit2.12192.
- Wang, H., Huang, Z., Zeng, X., Li, J., Zhang, Y. and Hu, Q. (2023), "Enhanced anticarbonization and electrical performance of epoxy resin via densified spherical boron nitride networks", ACS Appl. Electr. Mater., 5(7), 3726-3732. https://doi.org/10.1021/acsaelm.3c00451.
- Wang, J., Liu, H., Ying, H., Qiu, C., Li, J. and Anwar, M. S. (2023), "Attention-based neural network for end-to-end music separation", CAAI Trans. Intel. Technol., 8(2), 355-363. https://doi.org/10.1049/cit2.12163.
- Wu, Y., Lu, S., Zhang, C., Wang, C. and Fang, H. (2024), "Unveiling the three-dimensional network and deformation mechanism of foamed polyurethane by coarse-grained and graph theory", J. Mater. Res. Technol., 29, 4650-4661. https://doi.org/10.1016/j.jmrt.2024.02.156.
- Yan, C. A., Vescovini, R. and Dozio, L. (2020), "Physics-informed neural networks for the analysis of composite structures", 23rd International Conference on Composite Structures (ICCS23) and 6th International Conference on Mechanics of Composites (MECHCOMP6), 77-78.
- Yang, J., Fan, Y., Zhu, F., Ni, Z., Wan, X., Feng, C. and Yang, J. (2023), "Machine learning prediction of 28-day compressive strength of CNT/cement composites with considering size effects", Compos. Struct., 308, 116713. https://doi.org/10.1016/j.compstruct.2023.116713.
- Yang, J., Zeng, B., Hang, Z., Fan, Y., Ni, Z., Feng, C., ... & Yang, J. (2023), "Multimodal machine learning approach for exploring the 28-day compressive strength of nanomaterials-reinforced cement composites", Arch. Civil Mech. Eng., 23(3), 202. https://doi.org/10.1007/s43452-023-00738-z.
- Yang, J., Zeng, B., Ni, Z., Fan, Y., Hang, Z., Wang, Y., ... & Yang, J. (2023), "Comparison of traditional and automated machine learning approaches in predicting the compressive strength of graphene oxide/cement composites", Constr. Build. Mater., 394, 132179. https://doi.org/10.1016/j.conbuildmat.2023.132179.
- Yang, S., Huang, Z., Hu, Q., Zhang, Y., Wang, F., Wang, H. and Shu, Y. (2022), "Proportional optimization model of multiscale spherical BN for enhancing thermal conductivity", ACS Appl. Electr. Mater., 4(9), 4659-4667. https://doi.org/10.1021/acsaelm.2c00878.
- Yang, S., Zhang, Y., Sha, Z., Huang, Z., Wang, H., Wang, F. and Li, J. (2022), "Deterministic manipulation of heat flow via three-dimensional-printed thermal meta-materials for multiple protection of critical components", ACS Appl. Mater. Interf., 14(34), 39354-39363. https://doi.org/10.1021/acsami.2c09602.
- Yang, X., Tang, H., Li, Y., Zhan, Y., Li, Y., Zhong, F., ... & Li, K. (2024), "Synthesis, characterization, and thermal pyrolysis mechanism of high temperature resistant phenolphthalein-based poly (arylene ether nitrile)", Polym. Degrad. Stab., 224, 110754. https://doi.org/10.1016/j.polymdegradstab.2024.110754.
- Ye, C. and Wang, Y.Q. (2021), "Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: internal resonances", Nonlin. Dyn., 104(3), 2051-2069. https://doi.org/10.1007/s11071-021-06401-7.
- Yin, S., Du, Y., Liang, X., Xie, Y., Xie, D. and Mei, Y. (2023), "Surface coating of biomass-modified black phosphorus enhances flame retardancy of rigid polyurethane foam and its synergistic mechanism", Appl. Surf. Sci., 637, 157961. https://doi.org/10.1016/j.apsusc.2023.157961.
- Yin, S., Ren, X., Zheng, R., Li, Y., Zhao, J., Xie, D. and Mei, Y. (2023), "Improving fire safety and mechanical properties of waterborne polyurethane by montmorillonite-passivated black phosphorus", Chem. Eng. J., 464, 142683. https://doi.org/10.1016/j.cej.2023.142683.
- Young, R.J., Liu, M., Kinloch, I.A., Li, S., Zhao, X., Valles, C. and Papageorgiou, D.G. (2018), "The mechanics of reinforcement of polymers by graphene nanoplatelets", Compos. Sci. Technol., 154, 110-116. https://doi.org/10.1016/j.compscitech.2017.11.007.
- Zhao, J., Wang, Z. and Han, Y. (2022), "Stability analysis of elastic steel beam-column under high temperature", Int. J. Hydromechatron., 5(1), 44-79. https://doi.org/10.1504/IJHM.2022.122461.