DOI QR코드

DOI QR Code

Experimental investigating and machine learning prediction of GNP concentration on epoxy composites

  • Hatam K. Kadhom (Department of Electromechanical Engineering, University of Technology-Iraq) ;
  • Aseel J. Mohammed (Department of Electromechanical Engineering, University of Technology-Iraq)
  • Received : 2023.06.17
  • Accepted : 2024.04.23
  • Published : 2024.05.25

Abstract

We looked at how the damping qualities of epoxy composites changed when different amounts of graphite nanoplatelets (GNP) were added, from 0% to 6% by weight. A mix of free and forced vibration tests helped us find the key GNP content that makes the damper ability better the most. We also created a Representative Volume Element (RVE) model to guess how the alloys would behave mechanically and checked these models against testing data. An Artificial Neural Network (ANN) was also used to guess how these compounds would react to motion. With proper hyperparameter tweaking, the ANN model showed good correlation (R2=0.98) with actual data, indicating its ability to predict complex material behavior. Combining these methods shows how GNPs impact epoxy composite mechanical properties and how machine learning might improve material design. We show how adding GNPs to epoxy composites may considerably reduce vibration. These materials may be used in industries that value vibration damping.

Keywords

References

  1. Abderezak, R., Daouadji, T.H. and Tayeb, B. (2023), "Composite aluminum-slab RC beam bonded by a prestressed hybrid carbon-glass composite material", Struct. Eng. Mech., 85(5), 573-592. https://doi.org/10.12989/sem.2023.85.5.573.
  2. Alimoradi, H., Eskandari, E., Pourbagian, M. and Shams, M. (2022), "A parametric study of subcooled flow boiling of Al2O3/water nanofluid using numerical simulation and artificial neural networks", Nanosc. Microsc. Thermophys. Eng., 26(2-3), 129-159. https://doi.org/10.1080/15567265.2022.2108949.
  3. Aluko, O., Gowtham, S. and Odegard, G.M. (2017), "Multiscale modeling and analysis of graphene nanoplatelet/carbon fiber/epoxy hybrid composite", Compos. Part B: Eng., 131, 82-90. https://doi.org/10.1016/j.compositesb.2017.07.075.
  4. Alzabeebee, S., Dhahir, M.K. and Keawsawasvong, S. (2022), "Predictive model for the shear strength of concrete beams reinforced with longitudinal FRP bars", Struct. Eng. Mech., 84(2), 143-154. https://doi.org/10.12989/sem.2022.84.2.143.
  5. Askarnia, R., Fardi, S.R., Sobhani, M. and Staji, H. (2021), "Ternary hydroxyapatite/chitosan/graphene oxide composite coating on AZ91D magnesium alloy by electrophoretic deposition", Ceram. Int., 47(19), 27071-27081. https://doi.org/10.1016/j.ceramint.2021.06.120.
  6. Bratei, A.A. and Stefan-van Staden, R.I. (2024), "The importance of KRAS quantification for a clinicopathological characterization in colorectal cancer patients", Medinformat., 1(1), 20-26. https://doi.org/10.47852/bonviewMEDIN32021546.
  7. Cho, J., Luo, J.J. and Daniel, I.M. (2007), "Mechanical characterization of graphite/epoxy nanocomposites by multi-scale analysis", Compos. Sci. Technol., 67(11-12), 2399-2407. https://doi.org/10.1016/j.compscitech.2007.01.006.
  8. Corcione, C.E. and Maffezzoli, A. (2013), "Transport properties of graphite/epoxy composites: Thermal, permeability and dielectric characterization", Polym. Test., 32(5), 880-888. https://doi.org/10.1016/j.polymertesting.2013.03.023.
  9. Cortes, A., Romate, X.F.S., Jimenez-Suarez, A., Campo, M., Prolongo, M.G., Urena, A. and Prolongo, S.G. (2020), "3D printed anti-icing and de-icing system based on CNT/GNP doped epoxy composites with self-curing and structural health monitoring capabilities", Smart Mater. Struct., 30(2), 025016. https://doi.org/10.1088/1361-665X/abd343.
  10. Cui, W., Zhao, L., Ge, Y. and Xu, K. (2024), "A generalized van der Pol nonlinear model of vortex-induced vibrations of bridge decks with multistability", Nonlin. Dyn., 112(1), 259-272. https://doi.org/10.1007/s11071-023-09047-9.
  11. Cui, X., Sun, S., Han, B., Yu, X., Ouyang, J., Zeng, S. and Ou, J. (2017), "Mechanical, thermal and electromagnetic properties of nanographite platelets modified cementitious composites", Compos. Part A: Appl. Sci. Manuf., 93, 49-58. https://doi.org/10.1016/j.compositesa.2016.11.017.
  12. Deng, Y.F., Zhang, N., Huang, T., Lei, Y.Z. and Wang, Y. (2022), "Constructing tubular/porous structures toward highly efficient oil/water separation in electrospun stereocomplex polylactide fibers via coaxial electrospinning technology", Appl. Surf. Sci., 573, 151619. https://doi.org/10.1016/j.apsusc.2021.151619.
  13. Eskandari, E., Alimoradi, H., Pourbagian, M. and Shams, M. (2022), "Numerical investigation and deep learning-based prediction of heat transfer characteristics and bubble dynamics of subcooled flow boiling in a vertical tube", Korean J. Chem. Eng., 39(12), 3227-3245. https://doi.org/10.1007/s11814-022-1267-0.
  14. Fayyadh, M.M. and Razak, H.A. (2022), "Experimental validation of dynamic based damage locating indices in RC structures", Struct. Eng. Mech., 84(2), 181-206. https://doi.org/10.12989/sem.2022.84.2.181.
  15. Ferreira, C.I., Bianchi, O., Oviedo, M.A.S., Oliveira, R.V.B.D. and Mauler, R.S. (2013), "Morphological, viscoelastic and mechanical characterization of polypropylene/exfoliated graphite nanocomposites", Polimeros, 23, 456-461. https://doi.org/10.4322/polimeros.2013.066
  16. Gan, L.L., Xu, J.Q. and She, G.L. (2023), "Wave propagation of graphene platelets reinforced metal foams circular plates", Struct. Eng. Mech., 85(5), 645-654. https://doi.org/10.12989/sem.2023.85.5.645.
  17. Gao, Y., Picot, O.T., Bilotti, E. and Peijs, T. (2017), "Influence of filler size on the properties of poly (lactic acid)(PLA)/graphene nanoplatelet (GNP) nanocomposites", Eur. Polym. J., 86, 117-131. https://doi.org/10.1016/j.eurpolymj.2016.10.045.
  18. Hiremath, V. and Shukla, D.K. (2016), "Effect of particle morphology on viscoelastic and flexural properties of epoxy-alumina polymer nanocomposites", Plast., Rub. Compos., 45(5), 199-206. https://doi.org/10.1080/14658011.2016.1159778.
  19. Hobiny, A.D. and Abbas, I.A. (2021), "Generalized thermo-elastic interaction in a fiber-reinforced material with spherical holes", Struct. Eng. Mech., 78(3), 297-303. https://doi.org/10.12989/sem.2021.78.3.297.
  20. Hotaling, N.A., Bharti, K., Kriel, H. and Simon Jr, C.G. (2015). DiameterJ: A validated open source nanofiber diameter measurement tool", Biomater., 61, 327-338. https://doi.org/10.1016/j.biomaterials.2015.05.015.
  21. Hu, M., Yang, Y., Yu, Y. and Xue, Y. (2022), "Flexural behavior and flexural capacity prediction of precast prestressed composite beams", Struct. Eng. Mech., 84(2), 225. https://doi.org/10.12989/sem.2022.84.2.225.
  22. Hua, Y., Li, F., Hu, N. and Fu, S.Y. (2022), "Frictional characteristics of graphene oxide-modified continuous glass fiber reinforced epoxy composite", Compos. Sci. Technol., 223, 109446. https://doi.org/10.1016/j.compscitech.2022.109446.
  23. Iranmanesh, A. and Kaveh, A. (1999), "Structural optimization by gradient-based neural networks", Int. J. Numer. Meth. Eng., 46(2), 297-311. https://doi.org/10.1002/(SICI)1097-0207(19990920)46:2%3C297::AID-NME679%3E3.0.CO,2-C.
  24. Jagadeesh, P., Puttegowda, M., Mavinkere Rangappa, S. and Siengchin, S. (2021), "Influence of nanofillers on biodegradable composites: A comprehensive review", Polym. Compos., 42(11), 5691-5711. https://doi.org/10.1002/pc.26291.
  25. Jiang, H., Xie, Y., Zhu, R., Luo, Y., Sheng, X., Xie, D. and Mei, Y. (2023), "Construction of polyphosphazene-functionalized Ti3C2TX with high efficient flame retardancy for epoxy and its synergetic mechanisms", Chem. Eng. J., 456, 141049. https://doi.org/10.1016/j.cej.2022.141049.
  26. Kalkan, I., Ceylan, E., Kartal, S. and Baran, M. (2021), "Deflections of reinforced concrete beams with transverse openings of different geometries", Struct. Eng. Mech., 80(3), 323-339. https://doi.org/10.12989/sem.2021.80.3.323.
  27. Katheria, A., Nayak, J. and Das, N.C. (2022), "A journey of thermoplastic elastomer nanocomposites for electromagnetic shielding applications: From bench to transitional research", Mater. Adv., 3(6), 2670-2691. https://doi.org/10.1039/D1MA00989C.
  28. Kaveh, A. and Bondarabady, H.R. (2004), "Wavefront reduction using graphs, neural networks and genetic algorithm", Int. J. Numer. Meth. Eng., 60(11), 1803-1815. https://doi.org/10.1002/nme.1023.
  29. Kaveh, A. and Khavaninzadeh, N. (2023), "Efficient training of two ANNs using four meta-heuristic algorithms for predicting the FRP strength", Struct., 52, 256-272. https://doi.org/10.1016/j.istruc.2023.03.178.
  30. Kaveh, A., Bahreininejad, A. and Mostafaei, H. (1999), "A hybrid graph-neural method for domain decomposition", Comput. Struct., 70(6), 667-674. https://doi.org/10.1016/S0045-7949(98)00209-0.
  31. Kaveh, A., Dadras Eslamlou, A., Javadi, S.M. and Geran Malek, N. (2021), "Machine learning regression approaches for predicting the ultimate buckling load of variable-stiffness composite cylinders", Acta Mechanica, 232, 921-931. https://doi.org/10.1007/s00707-020-02878-2.
  32. Kuester, S., Demarquette, N.R., Ferreira Jr, J.C., Soares, B.G. and Barra, G.M. (2017), "Hybrid nanocomposites of thermoplastic elastomer and carbon nanoadditives for electromagnetic shielding", Eur. Polym. J., 88, 328-339. https://doi.org/10.1016/j.eurpolymj.2017.01.023.
  33. Kumar, S., Singh, K.S.K. and Singh, K.K. (2022), "Data-driven modeling for predicting tribo-performance of graphene-incorporated glass-fabric reinforced epoxy composites using machine learning algorithms", Polym. Compos., 43(9), 6599-6610. https://doi.org/10.1002/pc.26974.
  34. Li, J., Sui, T., Dong, X., Gu, F., Su, N., Liu, J. and Xu, C. (2022), "Large eddy simulation studies of two-phase flow characteristics in the abrasive flow machining of complex flow ways with a cross-section of cycloidal lobes", Int. J. Hydromechatr., 5(2), 136-166. https://doi.org/10.1504/IJHM.2022.123131.
  35. Li, Y., Huang, X., Zeng, L., Li, R., Tian, H., Fu, X., ... & Zhong, W.H. (2019), "A review of the electrical and mechanical properties of carbon nanofiller-reinforced polymer composites", J. Mater. Sci., 54, 1036-1076. https://doi.org/10.1007/s10853-018-3006-9.
  36. Lin, Y., Chen, C., Ma, Z., Sabor, N., Wei, Y., Zhang, T., ... & Zhao, J. (2023), "Emulation of brain metabolic activities based on a dynamically controllable optical phantom", Cyborg Bionic Syst., 4, 0047. https://doi.org/10.34133/cbsystems.0047.
  37. Liu, T., Feng, P., Bai, Y., Bai, S., Yang, J.Q. and Zhao, F. (2024), "Flexural performance of curved-pultruded GFRP arch beams subjected to varying boundary conditions", Eng. Struct., 308, 117962. https://doi.org/10.1016/j.compstruct.2020.113111.
  38. Liu, X. and Wang, X. (2023), "Application of artificial intelligence for solving the engineering problems", Struct. Eng. Mech., 85(1), 15-27. https://doi.org/10.12989/sem.2023.85.1.015.
  39. Luo, X., Yang, G. and Schubert, D.W. (2022), "Electrically conductive polymer composite containing hybrid graphene nanoplatelets and carbon nanotubes: Synergistic effect and tunable conductivity anisotropy", Adv. Compos. Hybrid Mater., 1-13. https://doi.org/10.1007/s42114-021-00332-y.
  40. Marquez, B.Y., Realyvasquez-Vargas, A., Lopez-Esparza, N. and Ramos, C.E. (2024), "Application of ordinary least squares regression and neural networks in predicting employee turnover in the industry", Arch. Adv. Eng. Sci., 2(1), 30-36. https://doi.org/10.47852/bonviewAAES32021326.
  41. Mousavi, S.R., Estaji, S., Paydayesh, A., Arjmand, M., Jafari, S.H., Nouranian, S. and Khonakdar, H.A. (2022), "A review of recent progress in improving the fracture toughness of epoxy-based composites using carbonaceous nanofillers", Polym. Compos., 43(4), 1871-1886. https://doi.org/10.1002/pc.26518.
  42. Neto, R.P., Teles, D.V., Vieira, C.S. and Amorim, D.L. (2022), "Energy equivalent lumped damage model for reinforced concrete structures", Struct. Eng. Mech., 84(2), 285-293. https://doi.org/10.12989/sem.2022.84.2.285.
  43. Palaniyappan, K., SMN Mydin, R.B., Widera, D., Noordin, S.S., Harun, N.H., Wan Eddis Effendy, W.N., ... & Sreekantan, S. (2023), "Double-edged sword of biofouling potentials associated with haemocompatibility behaviour: titania nanotube arrays for medical implant surface technology", Beni-Suef Univ. J. Basic Appl. Sci., 12(1), 36. https://doi.org/10.1186/s43088-023-00363-y.
  44. Pan, S., Dai, Q., Safaei, B., Qin, Z. and Chu, F. (2021), "Damping characteristics of carbon nanotube reinforced epoxy nanocomposite beams", Thin Wall. Struct., 166, 108127. https://doi.org/10.1016/j.tws.2021.108127.
  45. Pan, Y., Yang, B., Jia, N., Yu, Y., Xu, X., Wang, Y., ... & Shi, Y. (2021), "Enhanced thermally conductive and thermomechanical properties of polymethyl methacrylate (PMMA)/graphene nanoplatelets (GNPs) nanocomposites for radiator of electronic components", Polym. Test., 101, 107237. https://doi.org/10.1016/j.polymertesting.2021.107237.
  46. Qian, W., Zhang, W., Wu, S., Hu, Y., Zhang, X., Hu, Q., ... & Tu, S. (2024), "In situ X-ray imaging and numerical modeling of damage accumulation in C/SiC composites at temperatures up to 1200℃", J. Mater. Sci. Technol., 197, 65-77. https://doi.org/10.1016/j.jmst.2024.01.069.
  47. Remond, Y., Ahzi, S., Baniassadi, M. and Garmestani, H. (2016), Applied RVE Reconstruction and Homogenization of Heterogeneous Materials, John Wiley & Sons.
  48. Rofooei, F. R., Kaveh, A. and Farahani, F. M. (2011), "Estimating the vulnerability of the concrete moment resisting frame structures using artificial neural networks", Int. J. Optim. Civil Eng., 1(3), 433-448.
  49. Saboori, A., Pavese, M., Badini, C. and Fino, P. (2017), "Development of Al-and Cu-based nanocomposites reinforced by graphene nanoplatelets: Fabrication and characterization", Front. Mater. Sci., 11, 171-181. https://doi.org/10.1007/s11706-017-0377-9.
  50. Saleem, N., Gao, J., Irfan, R., Almadhor, A., Rauf, H. T., Zhang, Y. and Kadry, S. (2023), "DeepCNN: spectro-temporal feature representation for speech emotion recognition", CAAI Trans. Intel. Technol., 8(2), 401-417. https://doi.org/10.1049/cit2.12233.
  51. Saminu, S., Xu, G., Zhang, S., Ab El Kader, I., Aliyu, H.A., Jabire, A.H., ... & Adamu, M.J. (2023), "Applications of artificial intelligence in automatic detection of epileptic seizures using EEG signals: A review", Artif. Intel. Appl., 1(1), 11-25. https://doi.org/10.47852/bonviewAIA2202297.
  52. Sellam, M., Kannan, K. and Natarajan, S. (2023), "A new stabilised curvature computation method using the level set function", Int. J. Hydromechatr., 6(4), 325-341. https://doi.org/10.1504/IJHM.2023.134339.
  53. Sharma, N., Kumar, S. and Singh, K.K. (2022), "Taguchi's DOE and artificial neural network analysis for the prediction of tribological performance of graphene nano-platelets filled glass fiber reinforced epoxy composites under the dry sliding condition", Tribol. Int., 172, 107580. https://doi.org/10.1016/j.triboint.2022.107580.
  54. She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
  55. Singiresu, S.R. (1995), Mechanical Vibrations, Addison Wesley, Boston, MA.
  56. Srivastava, S.K. and Manna, K. (2022), "Recent advancements in the electromagnetic interference shielding performance of nanostructured materials and their nanocomposites: A review", J. Mater. Chem. A, 10(14), 7431-7496. https://doi.org/10.1039/D1TA09522F.
  57. Taleghani, M.H., Khodadadi, S., Maddahian, R. and Mokhtari-Dizaji, M. (2023), "Enhancing the bubble collapse energy using the electrohydrodynamic force", Phys. Fluid., 35(5), 053316. https://doi.org/10.1063/5.0146491.
  58. Turkoglu, T. and Celik, S. (2023), "Synergistic effects of TiC/GNP strengthening on the mechanical and tribological properties of Al6061 matrix composites coupled with process optimization by artificial neural network", Proc. Inst. Mech. Eng., Part E: J. Proc. Mech. Eng., 09544089231172899. https://doi.org/10.1177/09544089231172899.
  59. Wanasinghe, D., Aslani, F., Ma, G. and Habibi, D. (2020), "Review of polymer composites with diverse nanofillers for electromagnetic interference shielding", Nanomater., 10(3), 541. https://doi.org/10.3390/nano10030541.
  60. Wang, C., Guo, L., Xia, Y., Zhang, C., Sang, X., Xu, C., ... & Zhang, X. (2024), "Flexural performance and damage evolution of multiple fiberglass-reinforced UV-CIPP composite materials--A view from mechanics and energy release", J. Mater. Res. Technol., 29, 3317-3339. https://doi.org/10.1016/j.jmrt.2024.02.051.
  61. Wang, G., Hao, Z., Li, H. and Zhang, B. (2023), "An activated variable parameter gradient-based neural network for time-variant constrained quadratic programming and its applications", CAAI Trans. Intel. Technol., 8(3), 670-679. https://doi.org/10.1049/cit2.12192.
  62. Wang, H., Huang, Z., Zeng, X., Li, J., Zhang, Y. and Hu, Q. (2023), "Enhanced anticarbonization and electrical performance of epoxy resin via densified spherical boron nitride networks", ACS Appl. Electr. Mater., 5(7), 3726-3732. https://doi.org/10.1021/acsaelm.3c00451.
  63. Wang, J., Liu, H., Ying, H., Qiu, C., Li, J. and Anwar, M. S. (2023), "Attention-based neural network for end-to-end music separation", CAAI Trans. Intel. Technol., 8(2), 355-363. https://doi.org/10.1049/cit2.12163.
  64. Wu, Y., Lu, S., Zhang, C., Wang, C. and Fang, H. (2024), "Unveiling the three-dimensional network and deformation mechanism of foamed polyurethane by coarse-grained and graph theory", J. Mater. Res. Technol., 29, 4650-4661. https://doi.org/10.1016/j.jmrt.2024.02.156.
  65. Yan, C. A., Vescovini, R. and Dozio, L. (2020), "Physics-informed neural networks for the analysis of composite structures", 23rd International Conference on Composite Structures (ICCS23) and 6th International Conference on Mechanics of Composites (MECHCOMP6), 77-78.
  66. Yang, J., Fan, Y., Zhu, F., Ni, Z., Wan, X., Feng, C. and Yang, J. (2023), "Machine learning prediction of 28-day compressive strength of CNT/cement composites with considering size effects", Compos. Struct., 308, 116713. https://doi.org/10.1016/j.compstruct.2023.116713.
  67. Yang, J., Zeng, B., Hang, Z., Fan, Y., Ni, Z., Feng, C., ... & Yang, J. (2023), "Multimodal machine learning approach for exploring the 28-day compressive strength of nanomaterials-reinforced cement composites", Arch. Civil Mech. Eng., 23(3), 202. https://doi.org/10.1007/s43452-023-00738-z.
  68. Yang, J., Zeng, B., Ni, Z., Fan, Y., Hang, Z., Wang, Y., ... & Yang, J. (2023), "Comparison of traditional and automated machine learning approaches in predicting the compressive strength of graphene oxide/cement composites", Constr. Build. Mater., 394, 132179. https://doi.org/10.1016/j.conbuildmat.2023.132179.
  69. Yang, S., Huang, Z., Hu, Q., Zhang, Y., Wang, F., Wang, H. and Shu, Y. (2022), "Proportional optimization model of multiscale spherical BN for enhancing thermal conductivity", ACS Appl. Electr. Mater., 4(9), 4659-4667. https://doi.org/10.1021/acsaelm.2c00878.
  70. Yang, S., Zhang, Y., Sha, Z., Huang, Z., Wang, H., Wang, F. and Li, J. (2022), "Deterministic manipulation of heat flow via three-dimensional-printed thermal meta-materials for multiple protection of critical components", ACS Appl. Mater. Interf., 14(34), 39354-39363. https://doi.org/10.1021/acsami.2c09602.
  71. Yang, X., Tang, H., Li, Y., Zhan, Y., Li, Y., Zhong, F., ... & Li, K. (2024), "Synthesis, characterization, and thermal pyrolysis mechanism of high temperature resistant phenolphthalein-based poly (arylene ether nitrile)", Polym. Degrad. Stab., 224, 110754. https://doi.org/10.1016/j.polymdegradstab.2024.110754.
  72. Ye, C. and Wang, Y.Q. (2021), "Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: internal resonances", Nonlin. Dyn., 104(3), 2051-2069. https://doi.org/10.1007/s11071-021-06401-7.
  73. Yin, S., Du, Y., Liang, X., Xie, Y., Xie, D. and Mei, Y. (2023), "Surface coating of biomass-modified black phosphorus enhances flame retardancy of rigid polyurethane foam and its synergistic mechanism", Appl. Surf. Sci., 637, 157961. https://doi.org/10.1016/j.apsusc.2023.157961.
  74. Yin, S., Ren, X., Zheng, R., Li, Y., Zhao, J., Xie, D. and Mei, Y. (2023), "Improving fire safety and mechanical properties of waterborne polyurethane by montmorillonite-passivated black phosphorus", Chem. Eng. J., 464, 142683. https://doi.org/10.1016/j.cej.2023.142683.
  75. Young, R.J., Liu, M., Kinloch, I.A., Li, S., Zhao, X., Valles, C. and Papageorgiou, D.G. (2018), "The mechanics of reinforcement of polymers by graphene nanoplatelets", Compos. Sci. Technol., 154, 110-116. https://doi.org/10.1016/j.compscitech.2017.11.007.
  76. Zhao, J., Wang, Z. and Han, Y. (2022), "Stability analysis of elastic steel beam-column under high temperature", Int. J. Hydromechatron., 5(1), 44-79. https://doi.org/10.1504/IJHM.2022.122461.