과제정보
This work is supported by Key Laboratory of Architectural Acoustic Environment of Anhui Higher Education Institutes, Anhui Jianzhu University (AAE2022KF03).
참고문헌
- Adab, N. and Arefi, M. (2023). "Vibrational behavior of truncated conical porous GPL-reinforced sandwich micro/nano-shells", Eng. Comput., 39(1), 419-443. https://doi.org/10.1007/s00366-021-01580-8.
- Adab, N., Arefi, M. and Amabili, M. (2022), "A comprehensive vibration analysis of rotating truncated sandwich conical microshells including porous core and GPL-reinforced facesheets", Compos. Struct., 279, 114761. https://doi.org/10.1016/j.compstruct.2021.114761.
- Allahkarami, F. and Tohidi, H. (2022), "Axisymmetric postbuckling of functionally graded graphene platelets reinforced composite annular plate on nonlinear elastic medium in thermal environment", Int. J. Struct. Stab. Dyn., 23(03), 2350034. https://doi.org/10.1142/S0219455423500347.
- Arefi, M. and Adab, N. (2021), "Coupled stress based formulation for static and dynamic analyses of a higher-order shear and normal deformable FG-GPL reinforced microplates", Wave. Random Complex Media, 1-26. https://doi.org/10.1080/17455030.2021.1989084.
- Arefi, M., Bidgoli, E.M., Dimitri, R.R., Tornabene, F. and Reddy, J.N. (2019), "Size-dependent free vibrations of FG polymer composite curved nanobeams reinforced with graphene nanoplatelets resting on Pasternak foundations", Appl. Sci., 9(8), 1580. https://doi.org/10.3390/app9081580.
- Babaei, M., Kiarasi, F., Asemi, K., Dimitri, R. and Tornabene, F. (2022), "Transient thermal stresses in FG porous rotating truncated cones reinforced by graphene platelets", Appl. Sci.-Basel, 12(8), 3932. https://doi.org/10.3390/app12083932.
- Bidgoli, E.M.R. and Arefi, M. (2021), "Free vibration analysis of micro plate reinforced with functionally graded graphene nanoplatelets based on modified strain-gradient formulation", J. Sandw. Struct. Mater., 23(2), 436-472. https://doi.org/10.1177/1099636219839302.
- Chen, X., Lu, Y., Wu, Z., Shao, Y., Xue, X. and Wu, Y. (2023), "Free vibration of in-plane bi-directional functionally graded materials rectangular plates with geometric imperfections and general elastic restraints", Aerosp. Sci. Technol., 132, 108045. https://doi.org/10.1016/j.ast.2022.108045.
- Ding, H.X. and She, G.L. (2023), "Nonlinear resonance of axially moving graphene platelet-reinforced metal foam cylindrical shells with geometric imperfection", Arch. Civil Mech. Eng., 23(2), 97. https://doi.org/10.1007/s43452-023-00634-6.
- Ding, H.X., Zhang, Y.W., Li, Y.P. and She, G.L. (2023), "Nonlinear low-velocity impact response of graphene platelets reinforced metal foams doubly curved shells", Steel Compos. Struct., 49(3), 281-291. https://doi.org/10.12989/scs.2023.49.3.281.
- Esmaeili, H.R. and Kiani, Y. (2024), "Vibrations of graphene platelet reinforced composite doubly curved shells subjected to thermal shock", Mech. Bas. Des. Struct. Mach., 52(2), 650-679. https://doi.org/10.1080/15397734.2022.2120499.
- Feng, C., Kitipornchai, S. and Yang, J. (2017), "Nonlinear bending of polymer nanocomposite beams reinforced with nonuniformly distributed graphene platelets (GPLs)", Compos. Part B: Eng., 110, 132-140. https://doi.org/10.1016/j.compositesb.2016.11.024.
- Gan, L.L. and She, G.L. (2024), "Nonlinear low-velocity impact of magneto-electro-elastic plates with initial geometric imperfection", Acta Astronautica, 214, 11-29. https://doi.org/10.1016/j.actaastro.2023.10.016.
- Gao, W., Liu, Y., Qin, Z. and Chu, F. (2022), "Wave propagation in smart sandwich plates with functionally graded nanocomposite porous core and piezoelectric layers in multi-physics environment", Int. J. Appl. Mech., 14(7), 2250071. https://doi.org/10.1142/S1758825122500715.
- Gholami, R. and Ansari, R. (2018), "The effect of initial geometric imperfection on the nonlinear resonance of functionally graded carbon nanotube-reinforced composite rectangular plates", Appl. Math. Mech., 39, 1219-1238. https://doi.org/10.1007/s10483-018-2367-9.
- Gupta, A. and Talha, M. (2016), "An assessment of a nonpolynomial based higher order shear and normal deformation theory for vibration response of gradient plates with initial geometric imperfections", Compos. Part B: Eng., 107, 141-161. https://doi.org/10.1016/j.compositesb.2016.09.071.
- Javani, M., Kiani, Y. and Eslami, M.R. (2020), "Thermal buckling of FG graphene platelet reinforced composite annular sector plates", Thin. Wall. Struct., 148, 106589. https://doi.org/10.1016/j.tws.2019.106589.
- Kalhori, A., Bayat, M.J. and Asemi, K. (2023a), "Buckling response of functionally graded multilayer graphene plateletreinforced composite plates with circular/elliptical cutouts supporting on an elastic foundation under normal and shear loads", Front. Mech. Eng., 9, 1293713. https://doi.org/10.3389/fmech.2023.1293713.
- Kalhori, A., Bayat, M.J. and Asemi, K. (2023b), "Buckling analysis of stiffened functionally graded multilayer graphene platelet reinforced composite plate with circular cutout embedded on elastic support subjected to in-plane normal and shear loads", Result. Eng., 20, 101563. https://doi.org/10.1016/j.rineng.2023.101563.
- Khatounabadi, M., Jafari, M. and Asemi, K. (2022), "Low-velocity impact analysis of functionally graded porous circular plate reinforced with graphene platelets", Wave. Random Complex Media, 1-27. https://doi.org/10.1080/17455030.2022.2091182.
- Kiarasi, F., Babaei, M., Mollaei, S., Mohammadi, M. and Asemi, K. (2021), "Free vibration analysis of FG porous joined truncated conical-cylindrical shell reinforced by graphene platelets", Adv. Nano Res., 11(4), 361-380. https://doi.org/10.12989/anr.2021.11.4.361.
- Li, Q., Wu, D., Chen, Liu, X., L., Yu, Y. and Gao, W. (2018), "Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler-Pasternak elastic foundation", Int. J. Mech. Sci., 148, 596-610. https://doi.org/10.1016/j.ijmecsci.2018.09.020.
- Li, S.R., Zhang, J.H. and Zhao, Y.G. (2007), "Nonlinear thermomechanical post-buckling of circular FGM plate with geometric imperfection", Thin. Wall. Struct., 45(5), 528-536. https://doi.org/10.1016/j.tws.2007.04.002.
- Li, Y.P., She, G.L., Gan, L.L. and Liu, H.B. (2024), "Thermal postbuckling behavior of imperfect graphene platelets reinforced metal foams plates resting on nonlinear elastic foundations", Earthq. Struct., 26(4), 251-259. https://doi.org/10.12989/eas.2024.26.4.251.
- Liu, L., Li, J.M. and Kardomateas, G.A. (2019), "Nonlinear vibration of a composite plate to harmonic excitation with initial geometric imperfection in thermal environments", Compos. Struct., 209, 401-423. https://doi.org/10.1016/j.compstruct.2018.10.101.
- Mahani, R.B., Eyvazian, A., Musharavati, F., Sebaey, T.A. and Talebizadehsardari, P. (2020), "Thermal buckling of laminated Nano-Composite conical shell reinforced with graphene platelets", Thin Wall. Struct., 155, 106913. https://doi.org/10.1016/j.tws.2020.106913.
- Melaibari, A., Daikh, A.A., Basha, M., Abdalla, A.W., Othman, R., Almitani, K.H., ... & Eltaher, M.A. (2022), "Free vibration of FG-CNTRCs nano-plates/shells with temperature-dependent properties", Math., 10, 583. https://doi.org/10.3390/math10040583.
- Mohammadi, A., Ghasemi, F.A. and Shahgholi, M. (2021), "Stability analysis of an axially moving nanocomposite circular cylindrical shell with time-dependent velocity in thermal environments", Mech. Bas. Des. Struct., 49(5), 659-688. https://doi.org/10.1080/15397734.2019.1697933.
- Mollaei, S., Babaei, M. and Asemi, K. (2023), "Torsional buckling of functionally graded graphene reinforced composite laminated cylindrical panel", Arch. Appl. Mech., 93(2), 427-435. https://doi.org/10.1007/s00419-022-02132-2.
- She, G.L. and Ding, H.X. (2023), "Nonlinear primary resonance analysis of initially stressed graphene platelet reinforced metal foams doubly curved shells with geometric imperfection", Acta Mechanica Sinica, 39(2), 522392. https://doi.org/10.1007/s10409-022-22392-x.
- She, G.L., Li, Y.P., He, Y.J. and Song, J.P. (2024), "Thermal postbuckling analysis of graphene platelets reinforced metal foams beams with initial geometric imperfection", Comput. Concrete, 33(3), 241-250. https://doi.org/10.12989/cac.2024.33.3.241.
- Shi, G.J., Wang, D.Y., Hu, B. and Cai, S.J. (2022), "Effect of initial geometric imperfections on dynamic ultimate strength of stiffened plate under axial compression for ship structures", Ocean Eng., 256, 111448. https://doi.org/10.1016/j.oceaneng.2022.111448.
- Song, J.P. and She, G.L. (2024), "Nonlinear resonance and chaotic dynamic of rotating graphene platelets reinforced metal foams plates in thermal environment", Arch. Civil Mech. Eng., 24(1), 45. https://doi.org/10.1007/s43452-023-00846-w.
- Song, J.P., He, Y.J. and She, G.L. (2024a), "Nonlinear primary resonance of functionally graded doubly curved shells under different boundary conditions", Steel Compos. Struct., 50(2), 149-158. https://doi.org/10.12989/scs.2024.50.2.149.
- Song, J.P., She, G.L. and Eltaher, M.A. (2024c), "Nonlinear aerothermo-elastic flutter analysis of stiffened graphene platelets reinforced metal foams plates with initial geometric imperfection", Aerosp. Sci. Technol., 147, 109050. https://doi.org/10.1016/j.ast.2024.109050.
- Song, J.P., She, G.L. and He, Y.J. (2024b), "Nonlinear forced vibration of axially moving functionally graded cylindrical shells under hygro-thermal loads", Geomech. Eng., 36(2), 99-109. https://doi.org/10.12989/gae.2024.36.2.099.
- Song, M., Li, X., Kitipornchai, S., Bi, Q. and Yang, J. (2019), "Low-velocity impact response of geometrically nonlinear functionally graded graphene platelet-reinforced nanocomposite plates", Nonlin. Dyn., 95, 2333-2352. https://doi.org/10.1007/s11071-018-4695-y.
- Thanh, N.V., Khoa, N.D., Tuan, N.D., Tran, P. and Duc, N.D. (2017), "Nonlinear dynamic response and vibration of functionally graded carbon nanotube-reinforced composite (FGCNTRC) shear deformable plates with temperature-dependent material properties and surrounded on elastic foundations", J. Therm. Stress., 40(10), 1254-1274. https://doi.org/10.1080/01495739.2017.1338928.
- Wang, Z.X., Xu, J. and Qiao, P. (2014), "Nonlinear low-velocity impact analysis of temperature-dependent nanotube-reinforced composite plates", Compos. Struct., 108, 423-434. https://doi.org/10.1016/j.compstruct.2013.09.024.
- Xia, L., Wang, R.Q., Chen, G., Asemi, K. and Tounsi, A. (2023), "The finite element method for dynamics of FG porous truncated conical panels reinforced with graphene platelets based on the 3-D elasticity", Adv. Nano Res., 14(4), 375-389. https://doi.org/10.12989/.2023.14.4.375.
- Xu, J.Q. and She, G.L. (2023), "Resonance behavior of functionally graded carbon nanotube-reinforced composites shells with spinning motion and axial motion", Steel Compos. Struct., 49(3), 325-335. https://doi.org/10.12989/scs.2023.49.3.325.
- Yang, F.L., Wang, Y.Q. and Liu, Y. (2022), "Low-velocity impact response of axially moving functionally graded graphene platelet reinforced metal foam plates", Aerosp. Sci. Technol., 123, 107496. https://doi.org/10.1016/j.ast.2022.107496.
- Yang, S.H. and Sun, C.T. (1981), "Indentation law for composite laminates", NASA CR-165460.
- Yas, M. H. and Rahimi, S. (2020), "Thermal vibration of functionally graded porous nanocomposite beams reinforced by graphene platelets", Appl. Math. Mech., 41, 1209-1226. https://doi.org/10.1007/s10483-020-2634-6.
- Zhang, L., Chen, Z., Habibi, M., Ghabussi, A. and Alyousef, R. (2021), "Low-velocity impact, resonance, and frequency responses of FG-GPLRC viscoelastic doubly curved panel", Compos. Struct., 269, 114000. https://doi.org/10.1016/j.compstruct.2021.114000.
- Zhang, Y.W. and She, G.L. (2023a), "Nonlinear low-velocity impact response of graphene platelet-reinforced metal foam cylindrical shells under axial motion with geometrical imperfection", Nonlin. Dyn., 111, 6317-6334. https://doi.org/10.1007/s11071-022-08186-9.
- Zhang, Y.W. and She, G.L. (2024b), "Nonlinear combined resonance of axially moving conical shells under interaction between transverse and parametric modes", Commun. Nonlin. Sci. Numer. Simul., 131, 107849. https://doi.org/10.1016/j.cnsns.2024.107849.
- Zhang, Y.W. and She, G.L. (2024c), "Combined resonance of graphene platelets reinforced metal foams cylindrical shells with spinning motion under nonlinear forced vibration", Eng. Struct., 300, 117177. https://doi.org/10.1016/j.engstruct.2023.117177.
- Zhang, Y.W. and She, G.L. (2024d), "Nonlinear harmonic resonances of spinning graphene platelets reinforced metal foams cylindrical shell with initial geometric imperfections in thermal environment", Struct. Eng. Mech., 88(5), 405-417. https://doi.org/10.12989/sem.2023.88.5.405.
- Zhang, Y.W. and She, G.L. (2024e), "Investigation on internal resonance of fluid conveying pipes with initial geometric imperfection", Appl. Ocean Res., 146, 103961. https://doi.org/10.1016/j.apor.2024.103961.
- Zhang, Y.W., She, G. L. and Ding, H.X.(2023a), "Nonlinear resonance of graphene platelets reinforced metal foams plates under axial motion with geometric imperfections", Eur. J. Mech. A-Solid., 98, 104887. https://doi.org/10.1016/j.euromechsol.2022.104887.
- Zhang, Y.W., She, G. L. and Eltaher, M. A. (2023b), "Nonlinear transient response of graphene platelets reinforced metal foams annular plate considering rotating motion and initial geometric imperfection", Aerosp. Sci. Technol., 142, 108693. https://doi.org/10.1016/j.ast.2023.108693.