DOI QR코드

DOI QR Code

The effect of nanoparticles on the economics study of railway logistics transport based on mathematical model

  • Yanlong Zhao (School of Economics and Management, Harbin University) ;
  • Mohsen Nasihatgozar (Department of Mechanical Engineering, Kashan Branch, Islamic Azad University) ;
  • F. Ming (Department of Engineering, Malaya University)
  • Received : 2023.07.02
  • Accepted : 2024.04.24
  • Published : 2024.05.25

Abstract

The integration of nanoparticles into various industries has spurred interest in understanding their impact on logistics and transportation systems. In this study, we investigate the effect of nanoparticles on the economic aspects of railway logistics transport using a mathematical model. By incorporating factors such as transportation costs, time efficiency, and environmental considerations, we aim to assess the overall economic feasibility of integrating nanoparticles into railway logistics operations. Through mathematical modeling and analysis, we explore how the introduction of nanoparticles affects cost-benefit analyses, resource allocation, and decision-making processes within railway logistics. Our findings provide valuable insights into the economic implications of nanoparticle integration in railway transport, offering potential strategies for optimizing logistics operations and enhancing overall efficiency and sustainability.

Keywords

Acknowledgement

This work was supported by Heilongjiang Higher Education Teaching Reform Project (SJGY20220494) "Research on Blended Intelligent Teaching Model of Ecommerce Curriculum under the New Liberal Arts Background"

References

  1. Amoli, A., Kolahchi, R. and Rabani Bidgoli, M. (2018), "Seismic analysis of AL2O3 nanoparticles-reinforced concrete plates based on sinusoidal shear deformation theory", Earthq. Struct., 15(3), 285-294. https://doi.org/10.12989/eas.2018.15.3.285 
  2. Bakhshande Amnieh, H., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneous concrete blocks mixed by SiO2 nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mater., 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140 
  3. Brush, O. and Almorth, B. (1975), "Buckling of bars, plates and shells", Mc-Graw Hill. 
  4. Fakhar, A. and Kolahchi, R.J.I.J.O.M.S. (2018), "Dynamic buckling of magnetorheological fluid integrated by visco-piezo-GPL reinforced plates", Int. J. Mech. Sci., 144 ,788-799. https://doi.org/10.1016/j.ijmecsci.2018.06.036. 
  5. Golabchi, H., Kolahchi, R., Rabani Bidgoli, M. (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concr., 21(4), 431-440. https://doi.org/10.12989/cac.2018.21.4.431 
  6. Gong, S.W., Lam, K.Y. and Lu, C. (2000), "Structural analysis of a submarine pipeline subjected to underwater shock", Int. J. Press. Vess. Pip., 77, 417-423. https://doi.org/10.1016/S0308-0161(00)00022-3 
  7. Hajmohammad, M.H., Sharif Zarei, M., Nouri, A. and Kolahchi, R. (2017), "Dynamic buckling of sensor/functionally graded-carbon nanotube-reinforced laminated plates/actuator based on sinusoidal-visco-piezoelasticity theories", J. Sandw. Struct. Mater., 1099636217720373. https://doi.org/10.1177/1099636217720373 
  8. Hajmohammad, M.H., Nouri, A.H., Zarei, M.S., and Kolahchi, R. (2019), "A new numerical approach and visco-refined zigzag theory for blast analysis of auxetic honeycomb plates integrated by multiphase nanocomposite facesheets in hygrothermal environment", Eng. Comput., 35, 1141-1157. https://doi.org/10.1007/s00366-018-0655-x 
  9. Heidarzadeh, A., Kolahchi, R. and Rabani Bidgoli, M. (2018), "Concrete pipes reinforced with AL2O3 nanoparticles considering agglomeration: Magneto-thermo-mechanical stress analysis", Int. J. Civ. Eng. 16(3), 315-322. https://doi.org/10.1007/s40999-016-0130-2 
  10. Housner, G.W. (1952), "Bending vibrations of a pipe line containing flowing fluid", J. Appl. Mech., 19, 205-208. https://doi.org/10.1115/1.4010447
  11. Huang, Y.M., Liu, Y.S., Li, B.H., Li, Y.J. and Yue, Z.F. (2010), "Natural frequency analysis of fluid conveying pipeline with different boundary conditions", Nucl. Eng. Des., 240(3), 461-467. https://doi.org/10.1016/j.nucengdes.2009.11.038 
  12. Inozemtcev, A.S., Korolev, E.V. and Smirnov, V.A. (2017), "Nanoscale modifier as an adhesive for hollow microspheres to increase the strength of high-strength lightweight concrete", Struct. Concr., 18(1), 67-74. https://doi.org/10.1002/suco.201500048 
  13. Jassas, M.R., Rabani Bidgoli, M. and Kolahchi, R. (2019), "Forced vibration analysis of concrete slabs reinforced by agglomerated SiO2 nanoparticles based on numerical methods", Constr. Build. Mater., 211, 796-806. https://doi.org/10.1016/j.conbuildmat.2019.03.263 
  14. JafarianArani, A and Kolahchi, R. (2016), "Buckling Analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concr.,17(5), 567-578. https://doi.org/10.12989/cac.2016.17.5.567 
  15. Kolahchi, R., RabaniBidgoli, M., Beygipoor, G.H. and Fakhar, M.H. (2015), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Tech.,29, 3669-3677. https://doi.org/10.1007/s12206-015-0811-9 
  16. Kolahchi, R., Safari, M. and Esmailpour, M. (2016a), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265, https://doi.org/10.1016/j.compstruct.2016.05.023. 
  17. Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016b), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186, https://doi.org/10.1016/j.compstruct.2016.08.032. 
  18. Kolahchi, R., Zarei, M.Sh., Hajmohammad, M.H. and Naddaf Oskouei, A. (2017), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin Wall. Struct., 113, 162-169, https://doi.org/10.1016/j.tws.2017.01.016. 
  19. Kolahchi, R., Keshtegar, B. and Trung, N.T. (2021a), "Optimization of dynamic properties for laminated multiphase nanocomposite sandwich conical shell in thermal and magnetic conditions", Int. J. Sandw. Struct., 24(1), 643-662. https://doi.org/10.1177/10996362211020388. 
  20. Kolahchi, R. and Kolahdouzan, F. (2021b), "A numerical method for magneto-hygro-thermal dynamic stability analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Appl. Math. Model., 91, 458-475. https://doi.org/10.1016/j.apm.2020.09.060 
  21. Keshtegar, B., Farrokhian, A., Kolahchi, R. and Trung, N.T. (2020), "Dynamic stability response of truncated nanocomposite conical shell with magnetostrictive face sheets utilizing higher order theory of sandwich panels", Eur. J. Mech. A Solids, 82, 104010. https://doi.org/10.1016/j.euromechsol.2020.104010. 
  22. Lam, K.Y., Zong, Z. and Wang, Q.X. (2003), "Dynamic response of a laminated pipeline on the seabed subjected to underwater shock", Compos. Part B Eng., 34, 59-66. https://doi.org/10.1016/S1359-8368(02)00072-0 
  23. Lee, U. and Oh, H. (2003), "The spectral element model for pipelines conveying internal steady flow", Eng. Struct., 25, 1045-1055. https://doi.org/10.1016/S0141-0296(03)00047-6 
  24. Lin, W. and Qiao, N. (2008), "Vibration and stability of an axially moving beam immersed in fluid", Int. J. Solids Struct.,45, 1445-1457. https://doi.org/10.1016/j.ijsolstr.2007.10.015 
  25. Liu, Z.G., Liu, Y. and Lu, J. (2012), "Fluid-structure interaction of single flexible cylinder in axial flow", Comput. Fluids, 56, 143-151. https://doi.org/10.1016/j.compfluid.2011.12.003 
  26. Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181. http://doi.org/10.12989/anr.2019.7.3.181. 
  27. Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta. Metall. Mater., 21, 571-574. https://doi.org/10.1016/0001-6160(73)90064-3 
  28. Motezaker, M. and Kolahchi, R. (2017), "Seismic response of SiO2 nanoparticles-reinforced concrete pipes based on DQ and newmark methods", Comput. Concr.,19(6), 745-753. https://doi.org/10.12989/cac.2017.19.6.745 
  29. Motezaker, M., Kolahchi, R., Rajak, D.K. and Mahmoud, S.R. (2021), "Influences of fiber reinforced polymer layer on the dynamic deflection of concrete pipes containing nanoparticle subjected to earthquake load", Polym. Compos., http://doi.org/10.1002/pc.26118. 
  30. RabaniBidgoli, M. and Saeidifar, M. (2017), "Time-dependent buckling analysis of SiO2 nanoparticles reinforced concrete columns exposed to fire", Comput. Concr., 20(2), 119-127. https://doi.org/10.12989/cac.2017.20.2.119 
  31. Safari Bilouei, B., Kolahchi, R. and Rabanibidgoli, M. (2016), "Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concr., 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.6.1053 
  32. Shokravi M. (2017), "Vibration analysis of silica nanoparticles-reinforced concrete beams considering agglomeration effects", Comput. Concr., 19(3), 333-338. https://doi.org/10.12989/cac.2017.19.3.333 
  33. Simsek, M. (2010), "Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load", Compos. Struct., 92, 2532-2546. https://doi.org/10.1016/j.compstruct.2010.02.008 
  34. Su, Y., Li, J., Wu, C and Li, Z.X. (2016), "Influences of nanoparticles on dynamic strength of ultra-high performance concrete", Compos. Part B Eng., 91, 595-609. https://doi.org/10.1016/j.compositesb.2016.01.044 
  35. Taherifar, R., Zareei, S.A., Bidgoli, M.R. and Kolahchi, R. (2020), "Seismic analysis in pad concrete foundation reinforced by nanoparticles covered by smart layer utilizing plate higher order theory", Steel Compos. Struct., 37(1), 99-115. https://doi.org/10.12989/scs.2020.37.1.099 
  36. Yaylaci, M., Adiyaman, G., Oner, E., Birinci, A.J.S.E. and Mechanics (2020), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. http://doi.org/10.12989/sem.2020.76.3.325. 
  37. Yoon, H.I. and Son, I. (2007), "Dynamic response of rotating flexible cantilever fluid with tip mass", Int. J. Mech. Sci., 49, 878-887. https://doi.org/10.1016/j.ijmecsci.2006.11.006 
  38. ZamaniNouri, A. (2017), "Mathematical Modeling of concrete pipes reinforced with CNTs conveying fluid for vibration and stability analyses", Comput. Concr.,19(3), 325-331. https://doi.org/10.12989/cac.2017.19.3.325 
  39. Zhai, H., Wu, Z., Liu, Y. and Yue, Z. (2011), "Dynamic response of pipeline conveying fluid to random excitation", Nucl. Eng. Des., 241, 2744-2749. https://doi.org/10.1016/j.nucengdes.2011.06.024