Acknowledgement
The authors extend their appreciation to Taif University, Saudi Arabia, for supporting this work through project number (TU-DSPP-2024-104).
References
- Adiyaman, G., O ner, E., Yaylaci, M. and Birinci, A. (2023). "A study on the contact problem of a layer consisting of functionally graded material (FGM) in the presence of body force", J. Mech. Mater. Struct., 18(1), 125-141. https://doi.org/10.2140/jomms.2023.18.125
- AkhavanAlavi, S.M., Mohammadimehr, M. and Ejtahed, S.H. (2021), "Vibration analysis and control of micro porousbeam integrated with FG-CNT distributed piezoelectric sensor and actuator", Steel Compos. Struct., 41(4), 595-608. https://doi.org/10.12989/scs.2021.41.4.595
- AlSaid-Alwan, H.H.S. and Avcar, M. (2020), "Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study", Comput. Concr., 26(3), 285-292. https://doi.org/10.12989/cac.2020.26.3.285
- Ansari, M.I. and Kumar, A. (2019), "Bending analysis of functionally graded CNT reinforced doubly curved singly ruled truncated rhombic cone", Mech. Based Des. Struct., 47(1) ,67-86. https://doi.org/10.1080/15397734.2018.1519635
- Asadijafari, M.H., Zarastvand, M.R. and Talebitooti, R. (2021), "The effect of considering Pasternak elastic foundation on acoustic insulation of the finite doubly curved composite structures", Compos. Struct., 256, 113064. https://doi.org/10.1016/j.compstruct.2020.113064
- AsadiJafari, M. H., Zarastvand, M. and Zhou, J. (2023), "Doubly curved truss core composite shell system for broadband diffuse acoustic insulation", J. Vib. Control, 10775463231206229. https://doi.org/10.1177/10775463231206229
- Avcar, M., Hadji, and L., Civalek, O . (2023), "The influence of non-linear carbon nanotube reinforcement on the natural frequencies of composite beams", Adv. Nano Res., 14(5), 421-433. https://doi.org/10.12989/anr.2023.14.5.421
- Bao, T. and Liu, Z.L. (2020), "Evaluation of Winkler model and Pasternak model for dynamic soil-structure interaction analysis of structures partially embedded in soils", Int. J. Geomech., 20(2), 04019167. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001519
- Coleman, J.N., Khan, U., Blau, W.J. and Gun'ko, Y.K. (2006), "Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites", Carbon, 44(9), 1624-1652. https://doi.org/10.1016/j.carbon.2006.02.038
- Cui, X., Han, B., Zheng, Q., Yu, X., Dong, S., Zhang, L. and Ou, J. (2017), "Mechanical properties and reinforcing mechanisms of cementitious composites with different types of multiwalled carbon nanotubes, Composites Part A", Appl. Sci. Manuf., 103, 131-147. https://doi.org/10.1016/j.compositesa.2017.10.001
- Dat, N.D., Khoa, N.D., Nguyen, P.D. and Duc, N.D. (2020), "An analytical solution for nonlinear dynamic response and vibration of FG-CNT reinforced nanocomposite elliptical cylindrical shells resting on elastic foundations". ZAMM J. Appl. Math. Mech., 100(1), e201800238. https://doi.org/10.1002/zamm.201800238
- Draoui, A., Zidour, M., Tounsi, A. andAdim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117
- Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., 8(1), 49. https://doi.org/10.12989/anr.2020.8.1.037
- Garg, A., Belarbi, M.O., Chalak, H.D. and Chakrabarti, A. (2021), "A review of the analysis of sandwich FGM", Compos. Struct., 258, 113427. https://doi.org/10.1016/j.compstruct.2020.113427
- Ghafouri, M., Ghassabi, M., Zarastvand, M.R. and Talebitooti, R. (2022), "Sound propagation of three-dimensional sandwich panels: influence of three-dimensional re-entrant auxetic core", AIAA J., 60(11), 6374-6384. https://doi.org/10.2514/1.J061219
- Ghassabi, M., Zarastvand, M.R. and Talebitooti, R. (2020), "Investigation of state vector computational solution on modeling of wave propagation through functionally graded nanocomposite doubly curved thick structures", Eng. Comput., 36, 1417-1433. https://doi.org/10.1007/s00366-019-00773-6
- Giunta, G., Belouettar, S. and Carrera, E. (2010), "Analysis of FGM beams by means of classical and advanced theories", Mech. Adv. Mater. Struct., 17(8), 622-635. https://doi.org/10.1080/15376494.2010.518930
- Heidari, F., Afsari, A. and Janghorban, M. (2020), "Several models for bending and buckling behaviors of FG-CNTRCs with piezoelectric layers including size effects", Adv. Nano Res., 9(3), 193-210. https://doi.org/10.12989/anr.2020.9.3.193
- Heidari-Rarani, M., Alimirzaei, S. and Torabi, K. (2015), "Analytical solution for free vibration of functionally graded carbon nanotubes (FG-CNT) reinforced double-layered nanoplates resting on elastic medium", J. Sci. Technol. Compos., 2(3), 55-66.
- Huang, J. and Rodrigue, D. (2013), "Equivalent continuum models of carbon nanotube reinforced polypropylene composites", Mater. Des., 50, 936-945. https://doi.org/10.1016/j.matdes.2013.03.095
- Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0
- Karimzadeh, F., Ziaei-Rad, S. and Adibi, S. (2007), "Modeling considerations and material properties evaluation in analysis of carbon nano-tubes composite", Metall. Mater. Transact. B, 38(4), 695-705. https://doi.org/10.1007/s11663-007-9065-y
- Khazaei, P. and Mohammadimehr, M. (2020), "Vibration analysis of porous nanocomposite viscoelastic plate reinforced by FGSWCNTs based on a nonlocal strain gradient theory", Comput. Concr., 26(1), 31-52, https://doi.org/10.12989/cac.2020.26.1.031
- Koppad, P.G., Ram, H.A., Ramesh, C.S., Kashyap, K.T. and Koppad, R.G. (2013), "On thermal and electrical properties of multiwalled carbon nanotubes/copper matrix nanocomposites", J. Alloys Compd., 580, 527-532. https://doi.org/10.1016/j.jallcom.2013.06.123
- Kumar, P. and Srinivas, J. (2017), "Free vibration, bending and buckling of a FG-CNT reinforced composite beam: Comparative analysis with hybrid laminated composite beam", Multidiscipl. Model. Mater. Struct., 13(4), 590-611. https://doi.org/10.1108/MMMS-05-2017-0032
- Lei, Z.X., Zhang, L.W. and Liew, K. (2016), "Vibration of FG-CNT reinforced composite thick quadrilateral plates resting on Pasternak foundations", Eng. Anal. Bound. Elem., 64, 1-11. https://doi.org/10.1016/j.enganabound.2015.11.014
- Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct, 22(4), 889-913. http://doi.org/10.12989/scs.2016.22.4.889
- Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595
- Mayandi, K. and Jeyaraj, P. (2015), "Bending, buckling and free vibration characteristics of FG-CNT-reinforced polymer composite beam under non-uniform thermal load", Proceedings of the Institution of Mechanical Engineers, Part L, Journal of Materials: Design and Applications, 229(1), 13-28. https://doi.org/10.1177/1464420713493720
- Nguyen, P.D., Papazafeiropoulos, G., Vu, Q.V. and Duc, N.D. (2022), "Buckling response of laminated FG-CNT reinforced composite plates: Analytical and finite element approach", Aerosp. Sci. Technol., 121, 107368. https://doi.org/10.1016/j.ast.2022.107368
- Oner, E., SengulSabano, B., Uzun Yaylaci, E., Adiyaman, G., Yaylaci, M. and Birinci, A. (2022), "On the plane receding contact between two functionally graded layers using computational, finite element and artificial neural network methods", ZAMM J. Appl. Math. Mech., 102(2), e202100287. https://doi.org/10.1002/zamm.202100287
- Reissner, E. (1945), "The effect of transverse shears deformation on the bending of elastic plates", J. Appl. Mech., 12, 69-77. https://doi.org/10.1115/1.4009435
- Salami, S.J., Boroujerdy, M.S. and Bazzaz, E. (2021), "Geometrically nonlinear thermo-mechanical bending analysis of deep cylindrical composite panels reinforced by functionally graded CNTs", Adv. Nano Res., 10(4), 385, https://doi.org/10.12989/anr.2021.10.4.385
- Sankar, N., Reddy, M.N. and Prasad, R.K. (2016), "Carbon nanotubes dispersed polymer nanocomposites: mechanical, electrical, thermal properties and surface morphology", Bull. Mater. Sci., 39(1), 47-55. https://doi.org/10.1007/s12034-015-1117-3
- Sayyad, A.S. and Ghugal, Y.M. (2020), "Bending, buckling and free vibration analysis of size-dependent nanoscale FG beams using refined models and Eringen's nonlocal theory", Int. J. Appl. Mech., 12(1), 2050007. https://doi.org/10.1142/S1758825120500076
- Singh, Y.T., Patra, P.K., Obodo, K.O. and Rai, D.P. (2022), "Electronic and mechanical properties of (6, 1) single-walled carbon nanotubes with different tube diameters: a theoretical study", Carbon Lett., 32(2), 451-460. https://doi.org/10.1007/s42823-021-00274-x
- Talebitooti, R. and Zarastvand, M.R. (2018), "Vibroacoustic behavior of orthotropic aerospace composite structure in the subsonic flow considering the Third order Shear Deformation Theory", Aerosp. Sci. Technol., 75, 227-236. https://doi.org/10.1016/j.ast.2018.01.011
- Tagrara, S.H., Benachour, A., Bouiadjra, M.B. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., 19(5), 1259-1277, https://doi.org/10.12989/scs.2015.19.5.1259
- Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., 8(2), 135, https://doi.org/10.12989/anr.2020.8.2.135
- Turan, M., Uzun Yaylaci, E. and Yaylaci, M. (2023), "Free vibration and buckling of functionally graded porous beams using analytical, finite element, and artificial neural network methods", Arch. Appl. Mech., 93(4), 1351-1372. https://doi.org/10.1007/s00419-022-02332-w
- Vakili-Nezhaad, G., Al-Wadhahi, M., Gujrathi, A.M., Al-Maamari, R. and Mohammadi, M. (2017), "Effect of temperature and diameter of narrow single-walled carbon nanotubes on the viscosity of nanofluid: A molecular dynamics study", Fluid Phase Equil., 434, 193-199. https://doi.org/10.1016/j.fluid.2016.11.032
- Wang, Y., Xie, K., Fu, T. and Shi, C. (2019), "Bending and elastic vibration of a novel functionally graded polymer nanocomposite beam reinforced by grapheme nanoplatelets", Nanomaterials, 9(12), 1690. https://doi.org/10.3390/nano9121690
- Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Comput. Mater. Sci., 71, 201-208. https://doi.org/10.1016/j.commatsci.2013.01.028
- Wu, K., Li, Y., Huang, R., Chai, S., Chen, F. and Fu, Q. (2017), "Constructing conductive multi-walled carbon nanotubes network inside hexagonal boron nitride network in polymer composites for significantly improved dielectric property and thermal conductivity", Compos. Sci. Technol., 151, 193-201. https://doi.org/10.1016/j.compscitech.2017.07.014
- Yas, M.H. and Samadi, N. (2012), "Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation", Int. J. Press. Vessels Pip., 98, 119-128. https://doi.org/10.1016/j.ijpvp.2012.07.012
- Yaylaci, E.U., O ner, E., Yaylaci, M., O zdemir, M.E., Abushattal, A. and Birinci, A. (2022c), "Application of artificial neural networks in the analysis of the continuous contact problem", Struct. Eng. Mech., 84(1), 35-48. https://doi.org/10.12989/sem.2022.84.1.035
- Yaylaci, M., Abanoz, M., Yaylaci, E.U., O lmez, H., Sekban, D.M. and Birinci, A. (2022b), "Evaluation of the contact problem of functionally graded layer resting on rigid foundation pressed via rigid punch by analytical and numerical (FEM and MLP) methods", Arch. Appl. Mech., 92(6), 1953-1971. https://doi.org/10.1007/s00419-022-02159-5
- Yaylaci, M., Abanoz, M., Yaylaci, E.U., Olmez, H., Sekban, D. M. and Birinci, A. (2022d), "The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch", Steel Compos. Struct., 43(5), 661. https://doi.org/10.12989/SCS.2022.43.5.661
- Yaylaci, M., Sabano, B.S., O zdemir, M.E. andBirinci, A. (2022a), "Solving the contact problem of functionally graded layers resting on a HP and pressed with a uniformly distributed load by analytical and numerical methods", Struct. Eng. Mech., 82(3), 401-416. https://doi.org/10.12989/sem.2022.82.3.401
- Yaylaci, M., Uzun Yaylaci, E., O zdemir, M.E., Ay, S. and O zturk, S. (2022e), "Implementation of finite element and artificial neural network methods to analyze the contact problem of a functionally graded layer containing crack", Steel Compos. Struct., 45(4), 501. https://doi.org/10.12989/scs.2022.45.4.501
- Yaylaci, M, Yaylaci, E.U., O zdemir, M.E., O zturk, S. & Sesli, H. (2023), "Vibration and buckling analyses of FGM beam with edge crack: Finite element and multilayer perceptron methods", Steel Compos. Struct., 46(4), 565-575. https://doi.org/10.12989/scs.2023.46.4.565
- Yaylaci, M., Yayli, M., Yaylaci, E. U., Olmez, H. andBirinci, A. (2021), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78(5), 585-597 https://doi.org/10.12989/sem.2021.78.5.585
- Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143
- Zarastvand, M.R., Asadijafari, M.H. and Talebitooti, R. (2021a), "Improvement of the low-frequency sound insulation of the poro elastic aerospace constructions considering Pasternak elastic foundation", Aerosp. Sci. Technol., 112, 106620. https://doi.org/10.1016/j.ast.2021.106620
- Zarastvand, M.R., Asadijafari, M.H. and Talebitooti, R. (2022b), "Acoustic wave transmission characteristics of stiffened composite shell systems with double curvature", Compos. Struct., 292, 115688. https://doi.org/10.1016/j.compstruct.2022.115688
- Zarastvand, M.R., Ghassabi, M. and Talebitooti, R. (2021b), "A review approach for sound propagation prediction of plate constructions", Arch. Comput. Meth. Eng., 28, 2817-2843. https://doi.org/10.1007/s11831-020-09482-6
- Zarastvand, M.R., Ghassabi, M. and Talebitooti, R. (2022a), "Prediction of acoustic wave transmission features of the multilayered plate constructions: A review", J. Sandw. Struct. Mater., 24(1), 218-293. https://doi.org/10.1177/1099636221993891
- Zerrouki, R., Karas, A. and Zidour, M. (2020), "Critical buckling analyses of nonlinear FG-CNT reinforced nano-composite beam", Adv. Nano Res., 9(3), 211-220. https://doi.org/10.12989/anr.2020.9.3.211.
- Zhang, L.W., Song, Z.G. and Liew, K.M. (2015), "Nonlinear bending analysis of FG-CNT reinforced composite thick plates resting on Pasternak foundations using the element-free IMLS-Ritz method", Compos. Struct., 128, 165-175. https://doi.org/10.1016/j.compstruct.2015.03.011
- Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94(4), 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010