참고문헌
- Adiyaman, G., Oner, E., Yaylaci, M. and Birinci, A. (2024), "The contact problem of a functionally graded layer under the effect of gravity", ZAMM, 103(11), e202200560. https://doi.org/10.1002/zamm.202200560.
- Alibeigi, B., Tadi Beni, Y. and Mehralian, F. (2018), "On the thermal buckling of magneto-electro-elastic piezoelectric nanobeams", Eur. Phys. J. Plus., 133, 133 https://doi.org/10.1140/epjp/i2018-11954-7.
- Amara, K., Bouazza, M. and Fouad, B. (2016), "Postbuckling analysis of functionally graded beams using nonlinear model", Period. Polytech. Mech. Eng., 60(2), 121-128. https://doi.org/10.3311/PPme.8854.
- Arpanahi, R.A. Eskandari, A., Mohammadi, B. and Hashemi, S.H. (2023a), "Study on the effect of viscosity and fluid flow on buckling behavior of nanoplate with surface energy", Results Eng., 18, 101078. https://doi.org/10.1016/j.rineng.2023.101078.
- Arpanahi, R.A., Mohammadi, B., Ahmadian, M.T. and Hashemi, S.H. (2023b), "Study on the buckling behavior of nonlocal nanoplate submerged in viscous moving fluid", Int. J. Dyn. Control, 11, 2820-2830. https://doi.org/10.1007/s40435-023-01166-w.
- Barretta, R., Fabbrocino, F., Luciano, R. and de Sciarra, F.M. (2018), "Closed-form solutions in stress-driven two-phase integral elasticity for bending of functionally graded nanobeams", Phys. E, 97, 13-30. https://doi.org/10.1016/j.physe.2017.09.026.
- Becheri, T., Amara, K., Bouazza, M. and Benseddiq, N. (2016), Buckling of symmetrically laminated plates using nth-order shear deformation theory with curvature effects", Steel Compos. Struct., 21(6), 1347-1368. https://doi.org/10.12989/scs.2016.21.6.1347.
- Boucheta, A., Bouazza, M., Becheri, T., Eltaher, M.A, Tounsi, A. and Benseddiq, N. (2024), "Bending of sandwich FGM plates with a homogeneous core either hard or soft via a refined hyperbolic shear deformation plate theory", Iran J. Sci. Technol. Trans. Civ. Eng., 1-15. https://doi.org/10.1007/s40996-024-01386-w.
- Bouazza, M., Becheri, T., Boucheta, A., Eltaher, M.A. and Benseddiq, N. (2019a), "Bending behavior of laminated composite plates using the refined four-variable theory and the finite element method", Earthq. Struct., 17(3), 257-270. https://doi.org/10.12989/eas.2019.17.3.257.
- Bouazza, M., Antar, K., Amara, K., Benyoucef, S. and Bedia, E.A.A. (2019b), "Influence of temperature on the beams behavior strengthened by bonded composite plates", Geomech. Eng.,18(5), 555-66. https://doi.org/10.12989/gae.2019.18.5.555.
- Cuong-Le, T., Nguyen, K.D., Le-Minh, H., Phan-Vu, P., Nguyen-Trong, P. and Tounsi, A. (2022), "Nonlinear bending analysis of porous sigmoid FGM nanoplate via IGA and nonlocal strain gradient theory", Adv. Nano Res., 12(5), 441-455. https://doi.org/10.12989/anr.2022.12.5.441.
- Dehshahri, K., Nejad, M.Z., Ziaee, S., Niknejad, A. and Hadi, A. (2020), "Free vibrations analysis of arbitrary three-dimensionally FGM nanoplates", Adv. Nano Res., 8(2), 115-134. https://doi.org/10.12989/anr.2020.8.2.115.
- Derbale, A., Bouazza, M. and Benseddiq, N. (2021), "Analysis of the mechanical and thermal buckling of laminated beams by new refined shear deformation theory", Iran J. Sci. Technol. Trans. Civ. Eng., 45, 89-98. https://doi.org/10.1007/s40996-020-00417-6.
- Ebrahimi, F., Karimiasl, M. and Selvamani, R. (2020), "Bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal loading", Adv. Nano Res., 8(3), 203-214. https://doi.org/10.12989/anr.2020.8.3.203.
- Ebrahimi, F., Khosravi, K. and Dabbagh, A. (2021), "Wave dispersion in viscoelastic FG nanobeam via a novel spatial - temporal nonlocal strain gradient framework", Wave Random Complex Med., 1-23. https://doi.org/10.1080/17455030.2021.1970282.
- Ellali, M., Amara, K., Bouazza, M. and Bourada, F. (2018), "The buckling of piezoelectric plates on pasternak elastic foundation using higher-order shear deformation plate theories", Smart Struct. Syst., 21(1), 113-122. https://doi.org/10.12989/sss.2018.21.1.113.
- Ellali, M., Bouazza, M. and Amara, K. (2019), "Thermal buckling of a sandwich beam attached with piezoelectric layers via the shear deformation theory", Arch. Appl. Mech., 92, 657-665. https://doi.org/10.1007/s00419-021-02094-x.
- Ellali, M., Bouazza, M. and Zenkour, A.M. (2022), "Impact of micromechanical approaches on wave propagation of FG plates via indeterminate integral variables with a hyperbolic secant shear model", Int. J. Comput. Methods., 19(9). https://doi.org/10.1142/S0219876222500190.
- Ellali, M., Bouazza, M. and Zenkour, A.M. (2023a), "Wave propagation in functionally-graded nanoplates embedded in a winkler-pasternak foundation with initial stress effect", Phys. Mesomech., 26, 282-294. https://doi.org/10.1134/S1029959923030049.
- Ellali, M., Bouazza, M. and Zenkour, A.M. (2023b), "Wave propagation of FGM plate via new integral inverse cotangential shear model with temperature-dependent material properties", Geomech. Eng., 33(5), 427-437. https://doi.org/10.12989/gae.2023.33.5.427.
- Ellali, M., Amara, K. and Bouazza, M. (2024), "Thermal buckling of porous FGM plate integrated surface-bonded piezoelectric", CSM., 13(2), 171-186. https://doi.org/10.12989/csm.2024.13.2.171.
- Ghamkhar, M., Harbaoui, I., Hussain, M., Ayed, H., Khadimallah, M.A. and Alshoaibi, A. (2022), "Structural monitoring of layered FGM distribution ring support: Analysis with and without internal pressure", Adv. Nano Res., 12(3), 337-344. https://doi.org/10.12989/anr.2022.12.3.337.
- Heidari, F., Afsari, A. and Janghorban, M. (2020), "Several models for bending and buckling behaviors of FG-CNTRCs with piezoelectric layers including size effects", Adv. Nano Res., 9(3), 193-210. https://doi.org/10.12989/anr.2020.9.3.193.
- Kaur, I. and Singh, K. (2022), "Functionally graded nonlocal thermoelastic nanobeam with memory-dependent derivatives", SN Appl. Sci., 4, 329. https://doi.org/10.1007/s42452-022-05212-8.
- Kaur, I. and Singh, K. (2023a), "Forced flexural vibrations due to time-harmonic source in a thin nonlocal rectangular plate with memory-dependent derivative", Mech. Solids, 58, 1257-1270. https://doi.org/10.3103/S0025654423600538.
- Kaur, I. and Singh, K. (2023b), "Nonlocal memory dependent derivative analysis of a photo-thermoelastic semiconductor resonator", Mech. Solids, 58, 529-553. https://doi.org/10.3103/S0025654422601094.
- Kaur, I., Lata, P. and Singh, K. (2022), "Thermoelastic damping in generalized simply supported piezo-thermo-elastic nanobeam", Struct. Eng. Mech., 81(1), 29-37. https://doi.org/10.12989/sem.2022.81.1.029.
- Kaur, I., Singh, K. and Ghita, G.M.D. (2021), "New analytical method for dynamic response of thermoelastic damping in simply supported generalized piezothermoelastic nanobeam", Z. Angew. Math. Mech., 101, e202100108. https://doi.org/10.1002/zamm.202100108.
- Ke, L.L. and Wang, Y.S. (2014), "Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory", Phys. E, 63, 52-61. https://doi.org/10.1016/j.physe.2014.05.002.
- Ke, L.L., Wang, Y.S. and Wang, Z.D. (2012), "Nonlinear vibration of piezoelectric based on the nonlocal theory", Compos. Struct., 94, 2038-2047. https://doi.org/10.1016/j.compstruct.2012.01.023.
- Kiani, Y., Eslami, M.R. (2010), "Thermal buckling analysis of functionally graded material beams", Int. J. Mech. Mater. Des., 6, 229-238. https://doi.org/10.1007/s10999-010-9132-4.
- Lafi, D.E., Bouhadra, A., Mamen, B., Menasria, A., et al. (2024), "Combined influence of variable distribution models and boundary conditions on the thermodynamic behavior of FG sandwich plates lying on various elastic foundations", Struct. Eng. Mech., 89(2), 103-119. https://doi.org/10.12989/sem.2024.89.2.103.
- Li, H.C., Ke, L.L, Yang, J., Kitipornchai, S. and Wang, Y.S. (2020), "Free vibration of variable thickness FGM beam submerged in fluid", Compos. Struct., 233, 111582. https://doi.org/10.1016/j.compstruct.2019.111582.
- Li, L. and Hu, Y. (2016), "Nonlinear and free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.07.011.
- Li, S.R., Su, H.D. and Cheng, C.J. (2009), "Free vibration of functionally graded material beams with surface-bonded piezoelectric layers in thermal environment", Appl. Math. Mech., 30, 969-82. https://doi.org/10.1007/s10483-009-0803-7.
- Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
- Nguyen, T.K., Nguyen, T.T.P., Vo, T.P. and Thai, H.T. (2015), "Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory", Compos. B. Eng., 76, 273-285. https://doi.org/10.1016/j.compositesb.2015.02.032.
- Parsa, A. and Mahmoudpour, E. (2019), "Nonlinear free vibration analysis of embedded flexoelectric curved nanobeams conveying fluid and submerged in fluid via nonlocal strain gradient elasticity theory", Microsyst. Technol., 25, 4323-4339. https://doi.org/10.1007/s00542-019-04408-0.
- Reddy, J.N. and El-Borgi, S. (2014), "Eringen's nonlocal theories of beams accounting for moderate rotations", Int. J. Eng. Sci., 82, 159-177. https://doi.org/10.1016/j.ijengsci.2014.05.006.
- Romano, G. and Barretta, R. (2017), "Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams", Compos. B. Eng., 114, 184-188. https://doi.org/10.1016/j.compositesb.2017.01.008.
- Shariati, A, Ebrahimi, F., Karimiasl, M., Vinyas, M. and Toghroli, A. (2020b), "On transient hygrothermal vibration of embedded viscoelastic flexoelectric/piezoelectric nanobeams under magnetic loading", Adv. Nano Res., 8(1), 49-58. https://doi.org/10.12989/anr.2020.8.1.049.
- Shariati, A., Ebrahimi, F., Karimiasl, M., Selvamani, R. and Toghroli, A. (2020a), "On bending characteristics of smart magneto-electro-piezoelectric nanobeams system", Adv. Nano Res., 9(3), 183-191. https://doi.org/10.12989/anr.2020.9.3.183.
- Sheykhi, M., Eskandari, A., Ghafari, D., Arpanahi, R.A., Mohammadi, B. and Sh. Hashemi, H. (2023), "Investigation of fluid viscosity and density on vibration of nano beam submerged in fluid considering nonlocal elasticity theory", Alex. Eng. J., 65, 607-614. https://doi.org/10.1016/j.aej.2022.10.016.
- Sun, D. and Luo, S.N. (2011), "Wave propagation of functionally graded material plates in thermal environments", Ultrasonics, 51(8), 940-952. https://doi.org/10.1016/j.ultras.2011.05.009.
- Thai, H.T. and Choi, D. H. (2012), "A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation", Compos. B. Eng., 43(5), 2335-2347. https://doi.org/10.1016/j.compositesb.2011.11.062.
- Thai, H.T., Park, T. and Choi, D.H. (2012), "An efficient shear deformation theory for vibration of functionally graded plates", Arch. Appl. Mech., 83, 137-149. https://doi.org/10.1007/s00419-012-0642-4.
- Turan, M., Uzun Yaylaci, E. and Yaylaci, M. (2023), "Free vibration and buckling of functionally graded porous beams using analytical, finite element, and artificial neural network methods", Arch. Appl. Mech., 93, 1351-1372. https://doi.org/10.1007/s00419-022-02332-w.
- Vinh, P.V. and Tounsi, A. (2022a), "Free vibration analysis of functionally graded doubly curved nanoshells using nonlocal first-order shear deformation theory with variable nonlocal parameters", Thin Wall. Struct., 174, 109084. https://doi.org/10.1016/j.tws.2022.109084.
- Vinh, P.V. and Tounsi, A. (2022b), "The role of spatial vibration of the nonlocal parameter on the free vibration of functionally graded sandwich nanoplates", Eng. Comput., 38(5), 4301-4319. https://doi.org/10.1007/s00366-021-01475-8.
- Vinh, P.V., Tounsi, A. and Belarbi, M.O. (2023), "On the nonlocal free vibration analysis of functionally graded porous doubly curved shallow nanoshells with variable nonlocal parameters", Eng. Comput., 39, 835-855. https://doi.org/10.1007/s00366-022-01687-6.
- Yaylaci, M., Abanoz, M., Uzun Yaylaci, E., O lmez, H., Sekban, M.D. and Birinci, A. (2022), "The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch", Steel Compos. Struct., 43(5), 661-672. https://doi.org/10.12989/scs.2022.43.5.661.
- Yaylaci, M., Oner, E., Adiyaman, G., Ozturk, S., Uzun Yaylaci, E. and Birinci, A. (2023), "Analyzing of continuous and discontinuous contact problems of a functionally graded layer: theory of elasticity and finite element method", Mech. Based Des. Struct., 1-19. https://doi.org/10.1080/15397734.2023.2262562.
- Yaylaci, M., Uzun Yaylaci, E., Turan, M., Ozdemir, M.E., Ozturk, S. and Ay, S. (2024), "Research of the crack problem of a functionally graded layer", Steel Compos. Struct., 50(1), 77-87. https://doi.org/10.12989/scs.2024.50.1.077.