DOI QR코드

DOI QR Code

Vibration of piezo-magneto-thermoelastic FG nanobeam submerged in fluid with variable nonlocal parameter

  • 투고 : 2024.02.01
  • 심사 : 2024.04.15
  • 발행 : 2024.05.25

초록

This paper studies the free vibration analysis of the piezo-magneto-thermo-elastic FG nanobeam submerged in a fluid environment. The problem governed by the partial differential equations is determined by refined higher-order State Space Strain Gradient Theory (SSSGT). Hamilton's principle is applied to discretize the differential equation and transform it into a coupled Euler-Lagrange equation. Furthermore, the equations are solved analytically using Navier's solution technique to form stiffness, damping, and mass matrices. Also, the effects of nonlocal ceramic and metal parts over various parameters such as temperature, Magnetic potential and electric voltage on the free vibration are interpreted graphically. A comparison with existing published findings is performed to showcase the precision of the results.

키워드

참고문헌

  1. Adiyaman, G., Oner, E., Yaylaci, M. and Birinci, A. (2024), "The contact problem of a functionally graded layer under the effect of gravity", ZAMM, 103(11), e202200560. https://doi.org/10.1002/zamm.202200560.
  2. Alibeigi, B., Tadi Beni, Y. and Mehralian, F. (2018), "On the thermal buckling of magneto-electro-elastic piezoelectric nanobeams", Eur. Phys. J. Plus., 133, 133 https://doi.org/10.1140/epjp/i2018-11954-7.
  3. Amara, K., Bouazza, M. and Fouad, B. (2016), "Postbuckling analysis of functionally graded beams using nonlinear model", Period. Polytech. Mech. Eng., 60(2), 121-128. https://doi.org/10.3311/PPme.8854.
  4. Arpanahi, R.A. Eskandari, A., Mohammadi, B. and Hashemi, S.H. (2023a), "Study on the effect of viscosity and fluid flow on buckling behavior of nanoplate with surface energy", Results Eng., 18, 101078. https://doi.org/10.1016/j.rineng.2023.101078.
  5. Arpanahi, R.A., Mohammadi, B., Ahmadian, M.T. and Hashemi, S.H. (2023b), "Study on the buckling behavior of nonlocal nanoplate submerged in viscous moving fluid", Int. J. Dyn. Control, 11, 2820-2830. https://doi.org/10.1007/s40435-023-01166-w.
  6. Barretta, R., Fabbrocino, F., Luciano, R. and de Sciarra, F.M. (2018), "Closed-form solutions in stress-driven two-phase integral elasticity for bending of functionally graded nanobeams", Phys. E, 97, 13-30. https://doi.org/10.1016/j.physe.2017.09.026.
  7. Becheri, T., Amara, K., Bouazza, M. and Benseddiq, N. (2016), Buckling of symmetrically laminated plates using nth-order shear deformation theory with curvature effects", Steel Compos. Struct., 21(6), 1347-1368. https://doi.org/10.12989/scs.2016.21.6.1347.
  8. Boucheta, A., Bouazza, M., Becheri, T., Eltaher, M.A, Tounsi, A. and Benseddiq, N. (2024), "Bending of sandwich FGM plates with a homogeneous core either hard or soft via a refined hyperbolic shear deformation plate theory", Iran J. Sci. Technol. Trans. Civ. Eng., 1-15. https://doi.org/10.1007/s40996-024-01386-w.
  9. Bouazza, M., Becheri, T., Boucheta, A., Eltaher, M.A. and Benseddiq, N. (2019a), "Bending behavior of laminated composite plates using the refined four-variable theory and the finite element method", Earthq. Struct., 17(3), 257-270. https://doi.org/10.12989/eas.2019.17.3.257.
  10. Bouazza, M., Antar, K., Amara, K., Benyoucef, S. and Bedia, E.A.A. (2019b), "Influence of temperature on the beams behavior strengthened by bonded composite plates", Geomech. Eng.,18(5), 555-66. https://doi.org/10.12989/gae.2019.18.5.555.
  11. Cuong-Le, T., Nguyen, K.D., Le-Minh, H., Phan-Vu, P., Nguyen-Trong, P. and Tounsi, A. (2022), "Nonlinear bending analysis of porous sigmoid FGM nanoplate via IGA and nonlocal strain gradient theory", Adv. Nano Res., 12(5), 441-455. https://doi.org/10.12989/anr.2022.12.5.441.
  12. Dehshahri, K., Nejad, M.Z., Ziaee, S., Niknejad, A. and Hadi, A. (2020), "Free vibrations analysis of arbitrary three-dimensionally FGM nanoplates", Adv. Nano Res., 8(2), 115-134. https://doi.org/10.12989/anr.2020.8.2.115.
  13. Derbale, A., Bouazza, M. and Benseddiq, N. (2021), "Analysis of the mechanical and thermal buckling of laminated beams by new refined shear deformation theory", Iran J. Sci. Technol. Trans. Civ. Eng., 45, 89-98. https://doi.org/10.1007/s40996-020-00417-6.
  14. Ebrahimi, F., Karimiasl, M. and Selvamani, R. (2020), "Bending analysis of magneto-electro piezoelectric nanobeams system under hygro-thermal loading", Adv. Nano Res., 8(3), 203-214. https://doi.org/10.12989/anr.2020.8.3.203.
  15. Ebrahimi, F., Khosravi, K. and Dabbagh, A. (2021), "Wave dispersion in viscoelastic FG nanobeam via a novel spatial - temporal nonlocal strain gradient framework", Wave Random Complex Med., 1-23. https://doi.org/10.1080/17455030.2021.1970282.
  16. Ellali, M., Amara, K., Bouazza, M. and Bourada, F. (2018), "The buckling of piezoelectric plates on pasternak elastic foundation using higher-order shear deformation plate theories", Smart Struct. Syst., 21(1), 113-122. https://doi.org/10.12989/sss.2018.21.1.113.
  17. Ellali, M., Bouazza, M. and Amara, K. (2019), "Thermal buckling of a sandwich beam attached with piezoelectric layers via the shear deformation theory", Arch. Appl. Mech., 92, 657-665. https://doi.org/10.1007/s00419-021-02094-x.
  18. Ellali, M., Bouazza, M. and Zenkour, A.M. (2022), "Impact of micromechanical approaches on wave propagation of FG plates via indeterminate integral variables with a hyperbolic secant shear model", Int. J. Comput. Methods., 19(9). https://doi.org/10.1142/S0219876222500190.
  19. Ellali, M., Bouazza, M. and Zenkour, A.M. (2023a), "Wave propagation in functionally-graded nanoplates embedded in a winkler-pasternak foundation with initial stress effect", Phys. Mesomech., 26, 282-294. https://doi.org/10.1134/S1029959923030049.
  20. Ellali, M., Bouazza, M. and Zenkour, A.M. (2023b), "Wave propagation of FGM plate via new integral inverse cotangential shear model with temperature-dependent material properties", Geomech. Eng., 33(5), 427-437. https://doi.org/10.12989/gae.2023.33.5.427.
  21. Ellali, M., Amara, K. and Bouazza, M. (2024), "Thermal buckling of porous FGM plate integrated surface-bonded piezoelectric", CSM., 13(2), 171-186. https://doi.org/10.12989/csm.2024.13.2.171.
  22. Ghamkhar, M., Harbaoui, I., Hussain, M., Ayed, H., Khadimallah, M.A. and Alshoaibi, A. (2022), "Structural monitoring of layered FGM distribution ring support: Analysis with and without internal pressure", Adv. Nano Res., 12(3), 337-344. https://doi.org/10.12989/anr.2022.12.3.337.
  23. Heidari, F., Afsari, A. and Janghorban, M. (2020), "Several models for bending and buckling behaviors of FG-CNTRCs with piezoelectric layers including size effects", Adv. Nano Res., 9(3), 193-210. https://doi.org/10.12989/anr.2020.9.3.193.
  24. Kaur, I. and Singh, K. (2022), "Functionally graded nonlocal thermoelastic nanobeam with memory-dependent derivatives", SN Appl. Sci., 4, 329. https://doi.org/10.1007/s42452-022-05212-8.
  25. Kaur, I. and Singh, K. (2023a), "Forced flexural vibrations due to time-harmonic source in a thin nonlocal rectangular plate with memory-dependent derivative", Mech. Solids, 58, 1257-1270. https://doi.org/10.3103/S0025654423600538.
  26. Kaur, I. and Singh, K. (2023b), "Nonlocal memory dependent derivative analysis of a photo-thermoelastic semiconductor resonator", Mech. Solids, 58, 529-553. https://doi.org/10.3103/S0025654422601094.
  27. Kaur, I., Lata, P. and Singh, K. (2022), "Thermoelastic damping in generalized simply supported piezo-thermo-elastic nanobeam", Struct. Eng. Mech., 81(1), 29-37. https://doi.org/10.12989/sem.2022.81.1.029.
  28. Kaur, I., Singh, K. and Ghita, G.M.D. (2021), "New analytical method for dynamic response of thermoelastic damping in simply supported generalized piezothermoelastic nanobeam", Z. Angew. Math. Mech., 101, e202100108. https://doi.org/10.1002/zamm.202100108.
  29. Ke, L.L. and Wang, Y.S. (2014), "Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory", Phys. E, 63, 52-61. https://doi.org/10.1016/j.physe.2014.05.002.
  30. Ke, L.L., Wang, Y.S. and Wang, Z.D. (2012), "Nonlinear vibration of piezoelectric based on the nonlocal theory", Compos. Struct., 94, 2038-2047. https://doi.org/10.1016/j.compstruct.2012.01.023.
  31. Kiani, Y., Eslami, M.R. (2010), "Thermal buckling analysis of functionally graded material beams", Int. J. Mech. Mater. Des., 6, 229-238. https://doi.org/10.1007/s10999-010-9132-4.
  32. Lafi, D.E., Bouhadra, A., Mamen, B., Menasria, A., et al. (2024), "Combined influence of variable distribution models and boundary conditions on the thermodynamic behavior of FG sandwich plates lying on various elastic foundations", Struct. Eng. Mech., 89(2), 103-119. https://doi.org/10.12989/sem.2024.89.2.103.
  33. Li, H.C., Ke, L.L, Yang, J., Kitipornchai, S. and Wang, Y.S. (2020), "Free vibration of variable thickness FGM beam submerged in fluid", Compos. Struct., 233, 111582. https://doi.org/10.1016/j.compstruct.2019.111582.
  34. Li, L. and Hu, Y. (2016), "Nonlinear and free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.07.011.
  35. Li, S.R., Su, H.D. and Cheng, C.J. (2009), "Free vibration of functionally graded material beams with surface-bonded piezoelectric layers in thermal environment", Appl. Math. Mech., 30, 969-82. https://doi.org/10.1007/s10483-009-0803-7.
  36. Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
  37. Nguyen, T.K., Nguyen, T.T.P., Vo, T.P. and Thai, H.T. (2015), "Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory", Compos. B. Eng., 76, 273-285. https://doi.org/10.1016/j.compositesb.2015.02.032.
  38. Parsa, A. and Mahmoudpour, E. (2019), "Nonlinear free vibration analysis of embedded flexoelectric curved nanobeams conveying fluid and submerged in fluid via nonlocal strain gradient elasticity theory", Microsyst. Technol., 25, 4323-4339. https://doi.org/10.1007/s00542-019-04408-0.
  39. Reddy, J.N. and El-Borgi, S. (2014), "Eringen's nonlocal theories of beams accounting for moderate rotations", Int. J. Eng. Sci., 82, 159-177. https://doi.org/10.1016/j.ijengsci.2014.05.006.
  40. Romano, G. and Barretta, R. (2017), "Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams", Compos. B. Eng., 114, 184-188. https://doi.org/10.1016/j.compositesb.2017.01.008.
  41. Shariati, A, Ebrahimi, F., Karimiasl, M., Vinyas, M. and Toghroli, A. (2020b), "On transient hygrothermal vibration of embedded viscoelastic flexoelectric/piezoelectric nanobeams under magnetic loading", Adv. Nano Res., 8(1), 49-58. https://doi.org/10.12989/anr.2020.8.1.049.
  42. Shariati, A., Ebrahimi, F., Karimiasl, M., Selvamani, R. and Toghroli, A. (2020a), "On bending characteristics of smart magneto-electro-piezoelectric nanobeams system", Adv. Nano Res., 9(3), 183-191. https://doi.org/10.12989/anr.2020.9.3.183.
  43. Sheykhi, M., Eskandari, A., Ghafari, D., Arpanahi, R.A., Mohammadi, B. and Sh. Hashemi, H. (2023), "Investigation of fluid viscosity and density on vibration of nano beam submerged in fluid considering nonlocal elasticity theory", Alex. Eng. J., 65, 607-614. https://doi.org/10.1016/j.aej.2022.10.016.
  44. Sun, D. and Luo, S.N. (2011), "Wave propagation of functionally graded material plates in thermal environments", Ultrasonics, 51(8), 940-952. https://doi.org/10.1016/j.ultras.2011.05.009.
  45. Thai, H.T. and Choi, D. H. (2012), "A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation", Compos. B. Eng., 43(5), 2335-2347. https://doi.org/10.1016/j.compositesb.2011.11.062.
  46. Thai, H.T., Park, T. and Choi, D.H. (2012), "An efficient shear deformation theory for vibration of functionally graded plates", Arch. Appl. Mech., 83, 137-149. https://doi.org/10.1007/s00419-012-0642-4.
  47. Turan, M., Uzun Yaylaci, E. and Yaylaci, M. (2023), "Free vibration and buckling of functionally graded porous beams using analytical, finite element, and artificial neural network methods", Arch. Appl. Mech., 93, 1351-1372. https://doi.org/10.1007/s00419-022-02332-w.
  48. Vinh, P.V. and Tounsi, A. (2022a), "Free vibration analysis of functionally graded doubly curved nanoshells using nonlocal first-order shear deformation theory with variable nonlocal parameters", Thin Wall. Struct., 174, 109084. https://doi.org/10.1016/j.tws.2022.109084.
  49. Vinh, P.V. and Tounsi, A. (2022b), "The role of spatial vibration of the nonlocal parameter on the free vibration of functionally graded sandwich nanoplates", Eng. Comput., 38(5), 4301-4319. https://doi.org/10.1007/s00366-021-01475-8.
  50. Vinh, P.V., Tounsi, A. and Belarbi, M.O. (2023), "On the nonlocal free vibration analysis of functionally graded porous doubly curved shallow nanoshells with variable nonlocal parameters", Eng. Comput., 39, 835-855. https://doi.org/10.1007/s00366-022-01687-6.
  51. Yaylaci, M., Abanoz, M., Uzun Yaylaci, E., O lmez, H., Sekban, M.D. and Birinci, A. (2022), "The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch", Steel Compos. Struct., 43(5), 661-672. https://doi.org/10.12989/scs.2022.43.5.661.
  52. Yaylaci, M., Oner, E., Adiyaman, G., Ozturk, S., Uzun Yaylaci, E. and Birinci, A. (2023), "Analyzing of continuous and discontinuous contact problems of a functionally graded layer: theory of elasticity and finite element method", Mech. Based Des. Struct., 1-19. https://doi.org/10.1080/15397734.2023.2262562.
  53. Yaylaci, M., Uzun Yaylaci, E., Turan, M., Ozdemir, M.E., Ozturk, S. and Ay, S. (2024), "Research of the crack problem of a functionally graded layer", Steel Compos. Struct., 50(1), 77-87. https://doi.org/10.12989/scs.2024.50.1.077.