DOI QR코드

DOI QR Code

Assessment of nonlocal nonlinear free vibration of bi-directional functionally-graded Timoshenko nanobeams

  • Elnaz Zare (Department of Civil Engineering, Yasouj University) ;
  • Daria K. Voronkova (Department of Mathematics and Natural Sciences, Gulf University for Science and Technology) ;
  • Omid Faraji (Department of Civil Engineering, Imam Hossein University) ;
  • Hamidreza Aghajanirefah (Department of Civil Engineering, Faculty of Engineering, Qazvin Branch Islamic Azad University) ;
  • Hamid Malek Nia (Department of of Civil Engineering, Arak Branch, Islamic Azad University) ;
  • Mohammad Gholami (Department of Civil Engineering, Yasouj University) ;
  • Mojtaba Gorji Azandariani (Department of Civil Engineering, Semnan University)
  • Received : 2023.02.24
  • Accepted : 2023.09.23
  • Published : 2024.05.25

Abstract

The current study employs the nonlocal Timoshenko beam (NTB) theory and von-Kármán's geometric nonlinearity to develop a non-classic beam model for evaluating the nonlinear free vibration of bi-directional functionally-graded (BFG) nanobeams. In order to avoid the stretching-bending coupling in the equations of motion, the problem is formulated based on the physical middle surface. The governing equations of motion and the relevant boundary conditions have been determined using Hamilton's principle, followed by discretization using the differential quadrature method (DQM). To determine the frequencies of nonlinear vibrations in the BFG nanobeams, a direct iterative algorithm is used for solving the discretized underlying equations. The model verification is conducted by making a comparison between the obtained results and benchmark results reported in prior studies. In the present work, the effects of amplitude ratio, nanobeam length, material distribution, nonlocality, and boundary conditions are examined on the nonlinear frequency of BFG nanobeams through a parametric study. As a main result, it is observed that the nonlinear vibration frequencies are greater than the linear vibration frequencies for the same amplitude of the nonlinear oscillator. The study finds that the difference between the dimensionless linear frequency and the nonlinear frequency is smaller for CC nanobeams compared to SS nanobeams, particularly within the α range of 0 to 1.5, where the impact of geometric nonlinearity on CC nanobeams can be disregarded. Furthermore, the nonlinear frequency ratio exhibits an increasing trend as the parameter µ is incremented, with a diminishing dependency on nanobeam length (L). Additionally, it is established that as the nanobeam length increases, a critical point is reached at which a sharp rise in the nonlinear frequency ratio occurs, particularly within the nanobeam length range of 10 nm to 30 nm. These findings collectively contribute to a comprehensive understanding of the nonlinear vibration behavior of BFG nanobeams in relation to various parameters.

Keywords

References

  1. Ahouel, M., Houari, M.S.A., Bedia, E.A.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963.
  2. Almitani, K.H., Eltaher, M.A., Abdelrahman, A.A. and Abd-El-Mottaleb, H.E. (2021), "Finite element based stress and vibration analysis of axially functionally graded rotating beams", Struct. Eng. Mech., 79(1), 23-33. https://doi.org/10.12989/sem.2021.79.1.023.
  3. Amar, L.H.H., Kaci, A. and Tounsi, A. (2017), "On the size-dependent behavior of functionally graded micro-beams with porosities", Struct. Eng. Mech., 64(5), 527. https://doi.org/10.12989/SCS.2017.64.5.527.
  4. Ansari, R., Gholami, R. and Sahmani, S. (2011), "Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory", Compos. Struct., 94(1), 221-228. https://doi.org/10.1016/j.compstruct.2011.06.024.
  5. Ansari, R., Pourashraf, T. and Gholami, R. (2015), "An exact solution for the nonlinear forced vibration of functionally graded nanobeams in thermal environment based on surface elasticity theory", Thin-Walled Struct., 93, 169-176. https://doi.org/10.1016/j.tws.2015.03.013.
  6. Asghari, M., Rahaeifard, M., Kahrobaiyan, M.H. and Ahmadian, M.T. (2011), "The modified couple stress functionally graded Timoshenko beam formulation", Mater. Des., 32(3), 1435-1443. https://doi.org/10.1016/j.matdes.2010.08.046.
  7. Atmane, H.A., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369.
  8. Aydogdu, M., Arda, M. and Filiz, S. (2018), "Vibration of axially functionally graded nano rods and beams with a variable nonlocal parameter", Adv. Nano Res., 6(3), 257-278. https://doi.org/10.12989/anr.2018.6.3.257.
  9. Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Des., 28(5), 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007.
  10. Azandariani, M.G., Gholami, M. and Nikzad, A. (2022), "Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams", Adv. Nano Res., 12(1), 37. https://doi.org/10.12989/ANR.2022.12.1.037.
  11. Belarbi, M.O., Houari, M.S.A., Daikh, A.A., Garg, A., Merzouki, T., Chalak, H.D. and Hirane, H. (2021), "Nonlocal finite element model for the bending and buckling analysis of functionally graded nanobeams using a novel shear deformation theory", Compos. Struct., Elsevier Ltd, 264, 113712. https://doi.org/10.1016/j.compstruct.2021.113712.
  12. Bennai, R., Atmane, H.A. and Tounsi, A. (2015), "A new high-erorder shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., Techno Press, 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521.
  13. Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Beg, O.A. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425.
  14. Daikh, A.A., Houari, M.S.A. and Eltaher, M.A. (2021), "A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates", Compos. Struct., 262, 113347. https://doi.org/10.1016/j.compstruct.2020.113347.
  15. Dergachova, N.V. and Zou, G. (2021), "Dynamic response of functionally graded plates with a porous middle layer under time-dependent load", Comput. Concr., 27(3), 269-282. https://doi.org/10.12989/cac.2021.27.3.269.
  16. Ebrahimi, F. and Barati, M.R. (2018), "Stability analysis of functionally graded heterogeneous piezoelectric nanobeams based on nonlocal elasticity theory", Adv. Nano Res., 6(2), 93-112. https://doi.org/10.12989/anr.2018.6.2.093.
  17. Ebrahimi, F. and Haghi, P. (2018), "Elastic wave dispersion modelling within rotating functionally graded nanobeams in thermal environment", Adv. Nano Res., 6(3), 201-217. https://doi.org/10.12989/anr.2018.6.3.201.
  18. Elmascri, S., Bessaim, A., Taleb, O., Houari, M.S.A., Mohamed, S., Bernard, F. and Tounsi, A. (2020), "A novel hyperbolic plate theory including stretching effect for free vibration analysis of advanced composite plates in thermal environments" Struct. Eng. Mech., 75(2), 193-209. https://doi.org/10.12989/SCS.2020.75.2.193.
  19. Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013a), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201. https://doi.org/10.1016/j.compstruct.2012.11.039.
  20. Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090.
  21. Eltaher, M. A., Emam, S. A. and Mahmoud, F. F. (2013b), "Static and stability analysis of nonlocal functionally graded nanobeams", Compos. Struct., 96, 82-88. https://doi.org/10.1016/j.compstruct.2012.09.030.
  22. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
  23. Gao, Y., Xiao, W. and Zhu, H. (2019), "Nonlinear thermal buckling of bi-directional functionally graded nanobeams", Struct. Eng. Mech., 71(6), 669. https://doi.org/10.12989/SEM.2019.71.6.669.
  24. Gholami, M., Gorji Azandariani, M., Najat Ahmed, A. and Abdolmaleki, H. (2023), "Proposing a dynamic stiffness method for the free vibration of bi-directional functionally-graded Timoshenko nanobeams", Adv. Nano Res., 14(2), 127-139. https://doi.org/https://doi.org/10.12989/anr.2023.14.2.127.
  25. Ghorbanpour Arani, A., Hashemian, M. and Kolahchi, R. (2013), "Nonlocal Timoshenko beam model for dynamic stability of double-walled boron nitride nanotubes conveying nanoflow", Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 229(1), 2-16. https://doi.org/10.1177/1740349913513449.
  26. Gorji Azandariani, M., Gholami, M. and Zare, E. (2022), "Development of spectral element method for free vibration of axially-loaded functionally-graded beams using the first-order shear deformation theory", Eur. J. Mech. A Solids, 96, 104759. https://doi.org/10.1016/j.euromechsol.2022.104759.
  27. Hashemian, M., Falsafioon, M., Pirmoradian, M. and Toghraie, D. (2020), "Nonlocal dynamic stability analysis of a Timoshenko nanobeam subjected to a sequence of moving nanoparticles considering surface effects", Mech. Mater., Elsevier, 148, 103452. https://doi.org/10.1016/J.MECHMAT.2020.103452.
  28. Hashemian, M., Foroutan, S. and Toghraie, D. (2019), "Comprehensive beam models for buckling and bending behavior of simple nanobeam based on nonlocal strain gradient theory and surface effects", Mech. Mater., 139, 103209. https://doi.org/10.1016/J.MECHMAT.2019.103209.
  29. Hirane, H., Belarbi, M.O., Houari, M.S.A. and Tounsi, A. (2021), "On the layerwise finite element formulation for static and free vibration analysis of functionally graded sandwich plates", Eng. Comput., 1-29. https://doi.org/10.1007/s00366-020-01250-1.
  30. Jia, X.L., Ke, L.L., Feng, C.B., Yang, J. and Kitipornchai, S. (2015), "Size effect on the free vibration of geometrically nonlinear functionally graded micro-beams under electrical actuation and temperature change", Compos. Struct., 133, 1137-1148. https://doi.org/10.1016/j.compstruct.2015.08.044.
  31. Karami, B. and Janghorban, M. (2019), "On the dynamics of porous nanotubes with variable material properties and variable thickness", Int. J. Eng. Sci., 136, 53-66. https://doi.org/10.1016/j.ijengsci.2019.01.002.
  32. Karami, B. and Janghorban, M. (2020), "On the mechanics of functionally graded nanoshells", Int. J. Eng. Sci., 153, 103309. https://doi.org/10.1016/j.ijengsci.2020.103309.
  33. Karami, B., Janghorban, M. and Rabczuk, T. (2019a), "Static analysis of functionally graded anisotropic nanoplates using nonlocal strain gradient theory", Compos. Struct., 227, 111249. https://doi.org/10.1016/j.compstruct.2019.111249.
  34. Karami, B., Janghorban, M. and Rabczuk, T. (2019b), "Analysis of elastic bulk waves in functionally graded triclinic nanoplates using a quasi-3D bi-Helmholtz nonlocal strain gradient model", Eur. J. Mech. A Solids, 78, 103822. https://doi.org/10.1016/j.euromechsol.2019.103822.
  35. Karami, B., Janghorban, M. and Rabczuk, T. (2020), "Dynamics of two-dimensional functionally graded tapered Timoshenko nanobeam in thermal environment using nonlocal strain gradient theory", Compos. Part B Eng., 182, 107622. https://doi.org/10.1016/j.compositesb.2019.107622.
  36. Karami, B., Shahsavari, D. and Janghorban, M. (2018), "A comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates", Aerosp. Sci. Technol., 82-83, 499-512. https://doi.org/10.1016/j.ast.2018.10.001.
  37. Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019c), "Influence of homogenization schemes on vibration of functionally graded curved microbeams", Compos. Struct., 216, 67-79. https://doi.org/10.1016/j.compstruct.2019.02.089.
  38. Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2012), "Nonlinear free vibration of size-dependent functionally graded microbeams", Int. J. Eng. Sci., 50(1), 256-267. https://doi.org/10.1016/j.ijengsci.2010.12.008.
  39. Kim, D.H., Chang, Y.S. and Jhung, M.J. (2014), "Numerical study on fluid flow by hydrodynamic loads in reactor internals", Struct. Eng. Mech., 51(6), 1005-1016. https://doi.org/10.12989/sem.2014.51.6.1005.
  40. Kitipornchai, S., Ke, L.L., Yang, J. and Xiang, Y. (2009), "Nonlinear vibration of edge cracked functionally graded Timoshenko beams", J. Sound Vib., 324(3-5), 962-982. https://doi.org/10.1016/j.jsv.2009.02.023.
  41. Lestari, W. and Hanagud, S. (2001), "Nonlinear vibration of buckled beams: some exact solutions", Int. J. Solids Struct., 38(26-27), 4741-4757. https://doi.org/10.1016/S0020-7683(00)00300-0.
  42. Li, L. and Hu, Y. (2016), "Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 107, 77-97. https://doi.org/10.1016/j.ijengsci.2016.07.011.
  43. Li, L., Li, X. and Hu, Y. (2016), "Free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.02.010.
  44. Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
  45. Luat, D. T., Thom, D. Van, Thanh, T. T., Minh, P. Van, Ke, T. Van, and Vinh, P. Van. (2021), "Mechanical analysis of bi-functionally graded sandwich nanobeams", Adv. Nano Res., 11(1), 055. https://doi.org/10.12989/ANR.2021.11.1.055.
  46. Meradjah, M., Kaci, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2015), "A new higher order shear and normal deformation theory for functionally graded beams", Steel Compos. Struct., 18(3), 793-809. https://doi.org/10.12989/scs.2015.18.3.793.
  47. Moatallebi, M.A., Hashemian, M., Eftekhari, S.A., Toghraie, D. and Pirmoradian, M. (2022), "Supersonic flutter and free vibration features of functionally graded material nanobeams incorporating surface effects", Waves Random Complex Med., 1-36. https://doi.org/10.1080/17455030.2022.2159092.
  48. Nazemnezhad, R. and Hosseini-Hashemi, S. (2014), "Nonlocal nonlinear free vibration of functionally graded nanobeams", Compos. Struct., 110, 192-199. https://doi.org/10.1016/j.compstruct.2013.12.006.
  49. Nejad, M.Z. (2016), "Hadi A. Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams", Int J Eng Sci, 106, 1-9. https://doi.org/10.1016/j.ijengsci.2016.05.005
  50. Nejad, M.Z. and Hadi, A. (2016a), "Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 105, 1-11. https://doi.org/10.1016/j.ijengsci.2016.04.011.
  51. Nejad, M.Z. and Hadi, A. (2016b), "Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 106, 1-9. https://doi.org/10.1016/j.ijengsci.2016.05.005.
  52. Nejad, M.Z., Hadi, A., Omidvari, A. and Rastgoo, A. (2018), "Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's nonlocal elasticity theory", Struct. Eng. Mech., 67(4), 417-425. https://doi.org/10.12989/sem.2018.67.4.417.
  53. Nejad, M.Z., Hadi, A. and Rastgoo, A. (2016), "Buckling analysis of arbitrary two-directional functionally graded Euler-Bernoulli nano-beams based on nonlocal elasticity theory", Int. J. Eng. Sci., 103, 1-10. https://doi.org/10.1016/j.ijengsci.2016.03.001.
  54. Nejadi, M.M. and Mohammadimehr, M. (2020), "Analysis of a functionally graded nanocomposite sandwich beam considering porosity distribution on variable elastic foundation using DQM: Buckling and vibration behaviors", Comput. Concr., 25(3), 215-224. https://doi.org/10.12989/cac.2020.25.3.215.
  55. Niknam, H., Fallah, A. and Aghdam, M.M. (2014), "Nonlinear bending of functionally graded tapered beams subjected to thermal and mechanical loading", Int. J. Non. Linear. Mech., 65, 141-147. https://doi.org/10.1016/j.ijnonlinmec.2014.05.011.
  56. Rabhi, M., Benrahou, K.H., Kaci, A., Houari, M.S.A., Bourada, F., Bousahla, A.A., Tounsi, A., Bedia, E.A.A., Mahmoud, S.R. and Tounsi, A. (2020), "A new innovative 3-unknowns hsdt for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Geomech. Eng., 22(2), 119-132. https://doi.org/10.12989/gae.2020.22.2.119.
  57. Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory", Int. J. Eng. Sci., 77, 55-70. https://doi.org/10.1016/j.ijengsci.2013.12.003.
  58. Saffari, S., Hashemian, M. and Toghraie, D. (2017), "Dynamic stability of functionally graded nanobeam based on nonlocal Timoshenko theory considering surface effects", Phys. B Condens. Matter, 520, 97-105. https://doi.org/10.1016/J.PHYSB.2017.06.029.
  59. Saidi, H., Houari, M.S.A., Tounsi, A. and Bedia, E.A.A. (2013), "Thermo-mechanical bending response with stretching effect of functionally graded sandwich plates using a novel shear deformation theory", Steel Compos. Struct., 15(2), 221-245. https://doi.org/10.12989/scs.2013.15.2.221.
  60. Sanjay Anandrao, K., Gupta, R.K., Ramchandran, P. and Venkateswara Rao, G. (2012), "Non-linear free vibrations and post-buckling analysis of shear flexible functionally graded beams", Struct. Eng. Mech., 44(3), 339-361. https://doi.org/10.12989/sem.2012.44.3.339.
  61. Setoodeh, A.R. and Rezaei, M. (2017), "Large amplitude free vibration analysis of functionally graded nano/micro beams on nonlinear elastic foundation", Struct. Eng. Mech., 61(2), 209-220. https://doi.org/10.12989/sem.2017.61.2.209.
  62. Simsek, M. (2014), "Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory", Compos. Part B Eng., 56, 621-628. https://doi.org/10.1016/j.compositesb.2013.08.082.
  63. Simsek, M. (2016), "Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach", Int. J. Eng. Sci., 105, 12-27. https://doi.org/10.1016/j.ijengsci.2016.04.013.
  64. Simsek, M. and Yurtcu, H.H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038.
  65. Sina, S.A., Navazi, H.M. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Mater. Des., 30(3), 741-747. https://doi.org/10.1016/j.matdes.2008.05.015.
  66. Singh, G., Sharma, A.K. and Venkateswara Rao, G. (1990), "Large-amplitude free vibrations of beams-A discussion on various formulations and assumptions", J. Sound Vib., 142(1), 77-85. https://doi.org/10.1016/0022-460X(90)90583-L.
  67. Su, H. and Banerjee, J.R. (2015), "Development of dynamic stiffness method for free vibration of functionally graded Timoshenko beams", Comput. Struct., 147, 107-116. https://doi.org/10.1016/j.compstruc.2014.10.001.
  68. Xu, X., Karami, B. and Janghorban, M. (2021), "On the dynamics of nanoshells", Int. J. Eng. Sci., 158, 103431. https://doi.org/10.1016/j.ijengsci.2020.103431.
  69. Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
  70. Zenkour, A.M. and Abouelregal, A.E. (2015), "Thermoelastic interaction in functionally graded nanobeams subjected to time-dependent heat flux", Steel Compos. Struct., 18(4), 909-924. https://doi.org/10.12989/scs.2015.18.4.909.
  71. Zhou, J., Moradi, Z., Safa, M. and Khadimallah, M.A. (2022), "Intelligent modeling to investigate the stability of a two-dimensional functionally graded porosity-dependent nanobeam", Comput. Concr., Techno-Press, 30(2), 85-97. https://doi.org/10.12989/cac.2022.30.2.085.
  72. Zidi, M., Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2017), "A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams", Struct. Eng. Mech., 64(2), 145-153. https://doi.org/10.12989/sem.2017.64.2.145.