참고문헌
- Afzali, M., Rostamiyan, Y., Esmaeili, P., Afzali, M., Rostamiyan, Y. and Esmaeili, P. (2022), "Nano-graphene oxide damping behavior in polycarbonate coated on GFRP", Struct. Eng. Mech., Techno-Press, 84(6), 823. https://doi.org/10.12989/SEM.2022.84.6.823.
- Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., TechnoPress, 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039.
- Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277-282. https://doi.org/10.12989/anr.2020.8.4.277.
- Ashish, D.K. and Saini, P. (2018), "Successive recycled coarse aggregate effect on mechanical behavior and microstructural characteristics of concrete", Comput. Concr., 21(1), 39-46. https://doi.org/10.12989/cac.2018.21.1.039.
- ASTM Standard Test (2018), Standard Specification for Concrete Aggregates, American Society for Testing Materials, ASTMC33.
- ASTM Standard Test (2016), Standard Test Method for Resistance to Degradation of Large-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine, ASTM-C535, Philadelphia.
- ASTM Standard Test, (1989), Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine, ASTM C131, Philadelphia.
- Aydogdu, M., Arda, M. and Filiz, S. (2018), "Vibration of axially functionally graded nano rods and beams with a variable nonlocal parameter", Adv. Nano Res., 6(3), 257-278. https://doi.org/10.12989/anr.2018.6.3.257.
- Azandariani, M. G., Gholami, M. and Nikzad, A. (2022), "Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams", Adv. Nano Res., 12(1), 37. https://doi.org/10.12989/ANR.2022.12.1.037.
- Berghouti, H., Bedia, E.A.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
- Chu, H., Zhang, Y., Wang, F., Feng, T., Wang, L. and Wang, D. (2020), "Effect of graphene oxide on mechanical properties and durability of ultra-high-performance concrete prepared from recycled sand", Nanomaterials, MDPI AG, 10(9), 1718. https://doi.org/10.3390/nano10091718.
- Chuah, S., Li, W., Chen, S. J., Sanjayan, J. G. and Duan, W. H. (2018), "Investigation on dispersion of graphene oxide in cement composite using different surfactant treatments", Constr. Build. Mater., Elsevier Ltd, 161, 519-527. https://doi.org/10.1016/j.conbuildmat.2017.11.154.
- Devi, S.C. and Khan, R.A. (2020), "Effect of graphene oxide on mechanical and durability performance of concrete", J. Build. Eng., 27, 101007. https://doi.org/10.1016/j.jobe.2019.101007.
- Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G., Nguyen, S.T. and Ruoff, R.S. (2007), "Preparation and characterization of graphene oxide paper", Nature, 448(7152), 457-460. https://doi.org/10.1038/nature06016.
- Ebrahimi, F., Nouraei, M., Dabbagh, A. and Civalek, O . (2019a), "Buckling analysis of graphene oxide powder-reinforced nanocomposite beams subjected to non-uniform magnetic field", Struct. Eng. Mech., 71(4), 351-361. https://doi.org/10.12989/sem.2019.71.4.351.
- Ebrahimi, F., Nouraei, M., Dabbagh, A. and Rabczuk, T. (2019b), "Thermal buckling analysis of embedded graphene-oxide powder-reinforced nanocomposite plates", Adv. Nano Res., 7(5), 293-310. https://doi.org/10.12989/anr.2019.7.5.293.
- Feng, L., Li, Y., Luan, Y., Guo, Z., Xu, F. and Zhang, X. (2021), "Bioinspired nacre-like GO-based fiber with improved strength and toughness by staggered layer structure regulation and interface modification", Mech. Adv. Mater. Struct., 29(26), 5215-5224. https://doi.org/10.1080/15376494.2021.1950876.
- Gong, K., Pan, Z., Korayem, A.H., Qiu, L., Li, D., Collins, F., Wang, C.M. and Duan, W.H. (2015), "Reinforcing effects of graphene oxide on portland cement paste", J. Mater. Civ. Eng., ASCE, 27(2), A4014010. https://doi.org/10.1061/(asce)mt.1943-5533.0001125.
- Hadzima-Nyarko, M., Nyarko, K.E., Djikanovic, D. and Brankovic, G. (2021), "Microstructural and mechanical characteristics of self-compacting concrete with waste rubber", Struct. Eng. Mech., 78(2), 175-186. https://doi.org/10.12989/sem.2021.78.2.175.
- Kim, B., Taylor, L., Troy, A., McArthur, M. and Ptaszynska, M. (2018), "The effects of Graphene Oxide flakes on the mechanical properties of cement mortar", Comput. Concr., 21(3), 261-267. https://doi.org/10.12989/cac.2018.21.3.261.
- Kim, J.J., Fan, T. and Reda Taha, M.M. (2011), "A homogenization approach for uncertainty quantification of deflection in reinforced concrete beams considering microstructural variability", Struct. Eng. Mech., 38(4), 503-516. https://doi.org/10.12989/sem.2011.38.4.503.
- Lee, S.J., Jeong, S.H., Kim, D.U. and Won, J.P. (2020), "Graphene oxide as an additive to enhance the strength of cementitious composites", Compos. Struct., 242, 112154. https://doi.org/10.1016/j.compstruct.2020.112154.
- Li, X., Li, C., Liu, Y., Chen, S.J., Wang, C.M., Sanjayan, J.G. and Duan, W. H. (2018), "Improvement of mechanical properties by incorporating graphene oxide into cement mortar", Mech. Adv. Mater. Struct., 25(15-16), 1313-1322. https://doi.org/10.1080/15376494.2016.1218226.
- Li, X., Liu, Y.M., Li, W.G., Li, C.Y., Sanjayan, J.G., Duan, W.H. and Li, Z. (2017), "Effects of graphene oxide agglomerates on workability, hydration, microstructure and compressive strength of cement paste", Constr. Build. Mater., 145, 402-410. https://doi.org/10.1016/j.conbuildmat.2017.04.058.
- Lv, S.H., Deng, L.J., Yang, W.Q., Zhou, Q.F. and Cui, Y.Y. (2016), "Fabrication of polycarboxylate/graphene oxide nanosheet composites by copolymerization for reinforcing and toughening cement composites", Cem. Concr. Compos., 66, 1-9. https://doi.org/10.1016/j.cemconcomp.2015.11.007.
- Lv, S., Ma, Y., Qiu, C., Sun, T., Liu, J. and Zhou, Q. (2013), "Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites", Constr. Build. Mater., 49, 121-127. https://doi.org/10.1016/j.conbuildmat.2013.08.022.
- Mirjavadi, S. S., Forsat, M., Barati, M. R. and Hamouda, A. M. S. (2020a), "Assessment of transient vibrations of graphene oxide reinforced plates under pulse loads using finite strip method", Comput. Concr., 25(6), 575-585. https://doi.org/10.12989/cac.2020.25.6.575.
- Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020b), "Post-buckling analysis of geometrically imperfect tapered curved micro-panels made of graphene oxide powder reinforced composite", Steel Compos. Struct., 36(1), 63-74. https://doi.org/10.12989/scs.2020.36.1.063.
- Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Khan, I. (2020c), "Finite element based post-buckling analysis of refined graphene oxide reinforced concrete beams with geometrical imperfection", Comput. Concr., 25(4), 283-291. https://doi.org/10.12989/cac.2020.25.4.283.
- Moradifard, R., Gholami, M. and Zare, E. (2021), "Nonlinear free vibration analysis of a bi-directional functionally graded microbeam on nonlinear elastic foundation using modified couple stress theory", Int. J. Comput. Mater. Sci. Eng., 10(1). https://doi.org/10.1142/S2047684121500019.
- Pan, Z., He, L., Qiu, L., Korayem, A.H., Li, G., Zhu, J.W., Collins, F., Li, D., Duan, W. H. and Wang, M.C. (2015), "Mechanical properties and microstructure of a graphene oxide-cement composite", Cem. Concr. Compos., 58, 140-147. https://doi.org/10.1016/j.cemconcomp.2015.02.001.
- Park, S. and Ruoff, R.S. (2009), "Chemical methods for the production of graphenes", Nat. Nanotechnol., 4(4), 217-224. https://doi.org/10.1038/nnano.2009.58.
- Qiu, L., Yang, X., Gou, X., Yang, W., Ma, Z.F., Wallace, G.G. and Li, D. (2010), "Dispersing carbon nanotubes with graphene oxide in water and synergistic effects between graphene derivatives", Chem. A Eur. J., 10653-10658. https://doi.org/10.1002/chem.201001771.
- Rodriguez-Perez, M., Villanueva-Cab, J. and Pal, U. (2017), "Evaluation of thermally and chemically reduced graphene oxide films as counter electrodes on dye-sensitized solar cells", Adv. Nano Res., 5(3), 231-244. https://doi.org/10.12989/anr.2017.5.3.231.
- Shang, Y., Zhang, D., Yang, C., Liu, Y. and Liu, Y. (2015), "Effect of graphene oxide on the rheological properties of cement pastes", Constr. Build. Mater., 96, 20-28. https://doi.org/10.1016/j.conbuildmat.2015.07.181.
- Sobolev, K. and Ferrada Gutierrez, M. (2014), "How nanotechnology can change the concrete world", Prog. Nanotechnol., 113-116. https://doi.org/10.1002/9780470588260.ch16.
- Valizadeh Kiamahalleh, M., Gholampour, A., Tran, D.N.H., Ozbakkaloglu, T. and Losic, D. (2020), "Physiochemical and mechanical properties of reduced graphene oxide-cement mortar composites: Effect of reduced graphene oxide particle size", Constr. Build. Mater., 250, 118832. https://doi.org/10.1016/j.conbuildmat.2020.118832.
- Wang, Q., Cui, X., Wang, J., Li, S., Lv, C. and Dong, Y. (2017), "Effect of fly ash on rheological properties of graphene oxide cement paste", Constr. Build. Mater., Elsevier Ltd, 138, 35-44. https://doi.org/10.1016/j.conbuildmat.2017.01.126.
- Wang, Q., Li, S. Y., Pan, S. and Guo, Z.W. (2018), "Synthesis and properties of a silane and copolymer-modified graphene oxide for use as a water-reducing agent in cement pastes", New Carbon Mater., 33(2), 131-139. https://doi.org/10.1016/S1872-5805(18)60330-0.
- Wang, Q., Wang, J., Lu, C.X., Liu, B. W., Zhang, K. and Li, C.Z. (2015), "Influence of graphene oxide additions on the microstructure and mechanical strength of cement", Xinxing Tan Cailiao/New Carbon Mater., 30(4), 349-356. https://doi.org/10.1016/s1872-5805(15)60194-9.
- Wang, Y., Xie, K. and Fu, T. (2020), "Size-dependent dynamic stability of a FG polymer microbeam reinforced by graphene oxides", Struct. Eng. Mech., 73(6), 685-698. https://doi.org/10.12989/sem.2020.73.6.685.
- Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J.R. and Ruoff, R.S. (2010), "Graphene and Graphene Oxide: Synthesis, Properties, and Applications", Adv. Mater, 22(35), 3906-3924. https://doi.org/10.1002/adma.201001068.