DOI QR코드

DOI QR Code

Experimental investigation of mechanical and microstructural properties of concrete containing modified nano-Graphene Oxide

  • 투고 : 2023.01.22
  • 심사 : 2024.04.01
  • 발행 : 2024.05.25

초록

Microscopic defects within the microstructure of hardened cement paste are the main source of weakness in concrete. As a solution, nano-graphene oxide (GO) can be employed to improve the cement paste microstructure. However, there is a number of disadvantages, e.g., fluidity reduction and non-uniform dispersion. The present study sought to modify GO by fabricating a copolymer (PSGO) in a novel process to exploit the advantages of nano-GO while minimizing its disadvantages. Using 0.03wt% copolymerled to 38.8% higher tensile strength, 29.3% higher compressive strength and 25% higher workability. The SEM images revealed that GO and modified GO enhanced concrete by secondary hydration and bonding with C-S-H, creating a firm, integrated, and foil-like structure, and reducing the crack size and depth.

키워드

참고문헌

  1. Afzali, M., Rostamiyan, Y., Esmaeili, P., Afzali, M., Rostamiyan, Y. and Esmaeili, P. (2022), "Nano-graphene oxide damping behavior in polycarbonate coated on GFRP", Struct. Eng. Mech., Techno-Press, 84(6), 823. https://doi.org/10.12989/SEM.2022.84.6.823.
  2. Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., TechnoPress, 6(1), 39-55. https://doi.org/10.12989/anr.2018.6.1.039.
  3. Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277-282. https://doi.org/10.12989/anr.2020.8.4.277.
  4. Ashish, D.K. and Saini, P. (2018), "Successive recycled coarse aggregate effect on mechanical behavior and microstructural characteristics of concrete", Comput. Concr., 21(1), 39-46. https://doi.org/10.12989/cac.2018.21.1.039.
  5. ASTM Standard Test (2018), Standard Specification for Concrete Aggregates, American Society for Testing Materials, ASTMC33.
  6. ASTM Standard Test (2016), Standard Test Method for Resistance to Degradation of Large-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine, ASTM-C535, Philadelphia.
  7. ASTM Standard Test, (1989), Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine, ASTM C131, Philadelphia.
  8. Aydogdu, M., Arda, M. and Filiz, S. (2018), "Vibration of axially functionally graded nano rods and beams with a variable nonlocal parameter", Adv. Nano Res., 6(3), 257-278. https://doi.org/10.12989/anr.2018.6.3.257.
  9. Azandariani, M. G., Gholami, M. and Nikzad, A. (2022), "Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams", Adv. Nano Res., 12(1), 37. https://doi.org/10.12989/ANR.2022.12.1.037.
  10. Berghouti, H., Bedia, E.A.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  11. Chu, H., Zhang, Y., Wang, F., Feng, T., Wang, L. and Wang, D. (2020), "Effect of graphene oxide on mechanical properties and durability of ultra-high-performance concrete prepared from recycled sand", Nanomaterials, MDPI AG, 10(9), 1718. https://doi.org/10.3390/nano10091718.
  12. Chuah, S., Li, W., Chen, S. J., Sanjayan, J. G. and Duan, W. H. (2018), "Investigation on dispersion of graphene oxide in cement composite using different surfactant treatments", Constr. Build. Mater., Elsevier Ltd, 161, 519-527. https://doi.org/10.1016/j.conbuildmat.2017.11.154.
  13. Devi, S.C. and Khan, R.A. (2020), "Effect of graphene oxide on mechanical and durability performance of concrete", J. Build. Eng., 27, 101007. https://doi.org/10.1016/j.jobe.2019.101007.
  14. Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G., Nguyen, S.T. and Ruoff, R.S. (2007), "Preparation and characterization of graphene oxide paper", Nature, 448(7152), 457-460. https://doi.org/10.1038/nature06016.
  15. Ebrahimi, F., Nouraei, M., Dabbagh, A. and Civalek, O . (2019a), "Buckling analysis of graphene oxide powder-reinforced nanocomposite beams subjected to non-uniform magnetic field", Struct. Eng. Mech., 71(4), 351-361. https://doi.org/10.12989/sem.2019.71.4.351.
  16. Ebrahimi, F., Nouraei, M., Dabbagh, A. and Rabczuk, T. (2019b), "Thermal buckling analysis of embedded graphene-oxide powder-reinforced nanocomposite plates", Adv. Nano Res., 7(5), 293-310. https://doi.org/10.12989/anr.2019.7.5.293.
  17. Feng, L., Li, Y., Luan, Y., Guo, Z., Xu, F. and Zhang, X. (2021), "Bioinspired nacre-like GO-based fiber with improved strength and toughness by staggered layer structure regulation and interface modification", Mech. Adv. Mater. Struct., 29(26), 5215-5224. https://doi.org/10.1080/15376494.2021.1950876.
  18. Gong, K., Pan, Z., Korayem, A.H., Qiu, L., Li, D., Collins, F., Wang, C.M. and Duan, W.H. (2015), "Reinforcing effects of graphene oxide on portland cement paste", J. Mater. Civ. Eng., ASCE, 27(2), A4014010. https://doi.org/10.1061/(asce)mt.1943-5533.0001125.
  19. Hadzima-Nyarko, M., Nyarko, K.E., Djikanovic, D. and Brankovic, G. (2021), "Microstructural and mechanical characteristics of self-compacting concrete with waste rubber", Struct. Eng. Mech., 78(2), 175-186. https://doi.org/10.12989/sem.2021.78.2.175.
  20. Kim, B., Taylor, L., Troy, A., McArthur, M. and Ptaszynska, M. (2018), "The effects of Graphene Oxide flakes on the mechanical properties of cement mortar", Comput. Concr., 21(3), 261-267. https://doi.org/10.12989/cac.2018.21.3.261.
  21. Kim, J.J., Fan, T. and Reda Taha, M.M. (2011), "A homogenization approach for uncertainty quantification of deflection in reinforced concrete beams considering microstructural variability", Struct. Eng. Mech., 38(4), 503-516. https://doi.org/10.12989/sem.2011.38.4.503.
  22. Lee, S.J., Jeong, S.H., Kim, D.U. and Won, J.P. (2020), "Graphene oxide as an additive to enhance the strength of cementitious composites", Compos. Struct., 242, 112154. https://doi.org/10.1016/j.compstruct.2020.112154.
  23. Li, X., Li, C., Liu, Y., Chen, S.J., Wang, C.M., Sanjayan, J.G. and Duan, W. H. (2018), "Improvement of mechanical properties by incorporating graphene oxide into cement mortar", Mech. Adv. Mater. Struct., 25(15-16), 1313-1322. https://doi.org/10.1080/15376494.2016.1218226.
  24. Li, X., Liu, Y.M., Li, W.G., Li, C.Y., Sanjayan, J.G., Duan, W.H. and Li, Z. (2017), "Effects of graphene oxide agglomerates on workability, hydration, microstructure and compressive strength of cement paste", Constr. Build. Mater., 145, 402-410. https://doi.org/10.1016/j.conbuildmat.2017.04.058.
  25. Lv, S.H., Deng, L.J., Yang, W.Q., Zhou, Q.F. and Cui, Y.Y. (2016), "Fabrication of polycarboxylate/graphene oxide nanosheet composites by copolymerization for reinforcing and toughening cement composites", Cem. Concr. Compos., 66, 1-9. https://doi.org/10.1016/j.cemconcomp.2015.11.007.
  26. Lv, S., Ma, Y., Qiu, C., Sun, T., Liu, J. and Zhou, Q. (2013), "Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites", Constr. Build. Mater., 49, 121-127. https://doi.org/10.1016/j.conbuildmat.2013.08.022.
  27. Mirjavadi, S. S., Forsat, M., Barati, M. R. and Hamouda, A. M. S. (2020a), "Assessment of transient vibrations of graphene oxide reinforced plates under pulse loads using finite strip method", Comput. Concr., 25(6), 575-585. https://doi.org/10.12989/cac.2020.25.6.575.
  28. Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020b), "Post-buckling analysis of geometrically imperfect tapered curved micro-panels made of graphene oxide powder reinforced composite", Steel Compos. Struct., 36(1), 63-74. https://doi.org/10.12989/scs.2020.36.1.063.
  29. Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Khan, I. (2020c), "Finite element based post-buckling analysis of refined graphene oxide reinforced concrete beams with geometrical imperfection", Comput. Concr., 25(4), 283-291. https://doi.org/10.12989/cac.2020.25.4.283.
  30. Moradifard, R., Gholami, M. and Zare, E. (2021), "Nonlinear free vibration analysis of a bi-directional functionally graded microbeam on nonlinear elastic foundation using modified couple stress theory", Int. J. Comput. Mater. Sci. Eng., 10(1). https://doi.org/10.1142/S2047684121500019.
  31. Pan, Z., He, L., Qiu, L., Korayem, A.H., Li, G., Zhu, J.W., Collins, F., Li, D., Duan, W. H. and Wang, M.C. (2015), "Mechanical properties and microstructure of a graphene oxide-cement composite", Cem. Concr. Compos., 58, 140-147. https://doi.org/10.1016/j.cemconcomp.2015.02.001.
  32. Park, S. and Ruoff, R.S. (2009), "Chemical methods for the production of graphenes", Nat. Nanotechnol., 4(4), 217-224. https://doi.org/10.1038/nnano.2009.58.
  33. Qiu, L., Yang, X., Gou, X., Yang, W., Ma, Z.F., Wallace, G.G. and Li, D. (2010), "Dispersing carbon nanotubes with graphene oxide in water and synergistic effects between graphene derivatives", Chem. A Eur. J., 10653-10658. https://doi.org/10.1002/chem.201001771.
  34. Rodriguez-Perez, M., Villanueva-Cab, J. and Pal, U. (2017), "Evaluation of thermally and chemically reduced graphene oxide films as counter electrodes on dye-sensitized solar cells", Adv. Nano Res., 5(3), 231-244. https://doi.org/10.12989/anr.2017.5.3.231.
  35. Shang, Y., Zhang, D., Yang, C., Liu, Y. and Liu, Y. (2015), "Effect of graphene oxide on the rheological properties of cement pastes", Constr. Build. Mater., 96, 20-28. https://doi.org/10.1016/j.conbuildmat.2015.07.181.
  36. Sobolev, K. and Ferrada Gutierrez, M. (2014), "How nanotechnology can change the concrete world", Prog. Nanotechnol., 113-116. https://doi.org/10.1002/9780470588260.ch16.
  37. Valizadeh Kiamahalleh, M., Gholampour, A., Tran, D.N.H., Ozbakkaloglu, T. and Losic, D. (2020), "Physiochemical and mechanical properties of reduced graphene oxide-cement mortar composites: Effect of reduced graphene oxide particle size", Constr. Build. Mater., 250, 118832. https://doi.org/10.1016/j.conbuildmat.2020.118832.
  38. Wang, Q., Cui, X., Wang, J., Li, S., Lv, C. and Dong, Y. (2017), "Effect of fly ash on rheological properties of graphene oxide cement paste", Constr. Build. Mater., Elsevier Ltd, 138, 35-44. https://doi.org/10.1016/j.conbuildmat.2017.01.126.
  39. Wang, Q., Li, S. Y., Pan, S. and Guo, Z.W. (2018), "Synthesis and properties of a silane and copolymer-modified graphene oxide for use as a water-reducing agent in cement pastes", New Carbon Mater., 33(2), 131-139. https://doi.org/10.1016/S1872-5805(18)60330-0.
  40. Wang, Q., Wang, J., Lu, C.X., Liu, B. W., Zhang, K. and Li, C.Z. (2015), "Influence of graphene oxide additions on the microstructure and mechanical strength of cement", Xinxing Tan Cailiao/New Carbon Mater., 30(4), 349-356. https://doi.org/10.1016/s1872-5805(15)60194-9.
  41. Wang, Y., Xie, K. and Fu, T. (2020), "Size-dependent dynamic stability of a FG polymer microbeam reinforced by graphene oxides", Struct. Eng. Mech., 73(6), 685-698. https://doi.org/10.12989/sem.2020.73.6.685.
  42. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J.R. and Ruoff, R.S. (2010), "Graphene and Graphene Oxide: Synthesis, Properties, and Applications", Adv. Mater, 22(35), 3906-3924. https://doi.org/10.1002/adma.201001068.