DOI QR코드

DOI QR Code

Influence of burial conditions on the seepage characteristics of uranium bearing loose sandstone

  • Quan Jiang (School of Resources and Safety Engineering, Central South University) ;
  • Mingtao Jia (School of Resources and Safety Engineering, Central South University) ;
  • Yihan Yang (China Nuclear Inner Mongolia Mining Co., Ltd) ;
  • Qi Xu (China Nuclear Inner Mongolia Mining Co., Ltd) ;
  • Chuanfei Zhang (China Nuclear Inner Mongolia Mining Co., Ltd) ;
  • Xiangxue Zhang (China Nuclear Inner Mongolia Mining Co., Ltd) ;
  • Meifang Chen (Beijing Research Institute of Chemical Engineering Metallurgy)
  • Received : 2023.09.23
  • Accepted : 2023.11.21
  • Published : 2024.04.25

Abstract

To investigate the influence of different burial conditions on the seepage characteristics of loose sandstone in the leaching mining of sandstone uranium ore, this study applied different ground pressures and water pressures to rock samples at different burial depths to alter the rock's seepage characteristics. The permeability, pore distribution, and particle distribution characteristic parameters were determined, and the results showed that at the same burial depth, ground pressure had a greater effect on the reduction in permeability than water pressure. The patterns and mechanisms are as follows: under the influence of ground pressure, increasing the burial depth compresses the pores in the rock samples, decreases the proportion of effective permeable pores, and causes particle fragmentation, which blocks pore channels, resulting in a decrease in permeability. Under the influence of water pressure, increasing the burial depth expands the pores but also causes hard clay particles to decompose and block pore channels. As the burial depth increases, the particles eventually decompose completely, and the permeability initially decreases and then increases. In this experiment, the relationships between permeability and the proportion of pores larger than 0.15 ㎛ and the proportion of particles smaller than 59 ㎛ were found to be the most significant.

Keywords

Acknowledgement

The study is supported by the National Natural Science Foundation of China (Key Program). Subject No: 52,034,001, and the Independent Scientific Research Project of China Nuclear Inner Mongolia Mining Co., Ltd. Subject No: 4Y00-FW-GKJT-23-0507.

References

  1. L. Sinclair, J. Thompson, In situ leaching of copper: challenges and future prospects, Hydrometallurgy 157 (2015) 306-324, https://doi.org/10.1016/j.hydromet.2015.08.022.
  2. Q. Ma, Z.G. Feng, P. Liu, X.K. Lin, Z.G. Li, M.S. Chen, Uranium speciation and in situ leaching of a sandstone-type deposit from China, J. Radioanal. Nucl. Chem. 311 (3) (2017) 2129-2134, https://doi.org/10.1007/s10967-016-5154-1.
  3. L.L. Kuhar, K. Bunney, M. Jackson, P. Austin, J. Li, D.J. Robinson, H. Prommer, J. Sun, J. Oram, A. Rao, Assessment of amenability of sandstone-hosted uranium deposit for in-situ recovery, Hydrometallurgy 179 (2018) 157-166, https://doi.org/10.1016/j.hydromet.2018.06.003.
  4. G. Renard, J.F. Nauroy, C. Deruyter, J.C. Moulu, J.P. Sarda, J.F. Le Romancer, Cold production of heavy oils, Oil Gas Sci. Technol. 55 (1) (2000) 35-66, https://doi.org/10.2516/ogst:2000003.
  5. C.B. Morales-Monsalve, G.A. Alzate-Espinosa, A. Arbelaez-Londono, Stress-strain behavior in heavy oil reservoirs using mohr-coulomb constitutive model, Geotech. Geol. Eng. 37 (4) (2019) 3343-3353, https://doi.org/10.1007/s10706-019-00848-7.
  6. F. Zhang, T. Wang, F. Liu, M. Peng, B. Bate, P. Wang, Hydro-mechanical coupled analysis of near-well bore fines migration from unconsolidate dreservoirs, Acta Geotech 17 (2022) 3535-3551, https://doi.org/10.1007/s11440-021-01396-2.
  7. Z. Dakang, Z. Xiaomin, Characteristics and genetic mechanism of deep-buried clastic eureservoir in China, Sci. China Ser. D Earth Sci. 51 (2) (2008) 11-19, 10.1007/s11430-008-6012-y.
  8. L. Zhou, Y. Li, F. Jin, L. Fu, X. Pu, L. Da, H. Li, H. Liu, W. Xu, Tight sandstone reservoir formation mechanism of upper paleozoic buried hills in the huanghua depression, bohai bay basin, eastern China, Minerals 11 (12) (2021) 1368, 10.3390/min11121368.
  9. K.C. Khilar, H.S. Fogler, Water sensitivity of sandstones, SPE J. 23 (1) (1983) 55-64. Watersensitivityofsandstones. https://doi.org/10.2118/10103-PA
  10. M. Perera, P.G. Ranjith, T.D. Rathnaweera, G. De Silva, T. Liu, An experimental study to quantify sand production during oil recovery from unconsolidated quicksand formations, Petrol. Explor. Dev. 44 (5) (2017) 860-865, https://doi.org/10.1016/S1876-3804(17)30097-6.
  11. M. Yan, J.G. Deng, B.H. Yu, M. Li, B. Zhang, Q.Z. Xiao, D.L. Tian, Comparative study on sanding characteristics between weakly consolidated sandstones and unconsolidated sandstones, J. Nat. Gas Sci. Eng. 76 (2020), 103183, https://doi.org/10.1016/j.jngse.2020.103183.
  12. L. Sinclair, J. Thompson, In situ leaching of copper: challenges and future prospects, Hydrometallurgy 157 (2015) 306-324, https://doi.org/10.1016/j.hydromet.2015.08.022.
  13. T. Vargas, H. Estay, E. Arancibia, S. Diaz-Quezada, In situ recovery of copper sulfide ores: alternative process schemes for bioleaching application, Hydrometallurgy 196 (2020), 105442, https://doi.org/10.1016/j.hydromet.2020.105442.
  14. R. Cao, S. Zhang, N. Banthia, Y. Zhang, Z. Zhang, Interpreting the early-age reaction process of alkali-activated slag by using combined embedded ultrasonic measurement, thermal analysis, xrd, ftir and sem, Compos. B Eng. 186 (2020), 107840, https://doi.org/10.1016/j.compositesb.2020.107840.
  15. H.L. Wang, W.Y. Xu, M. Cai, Z.P. Xiang, Q. Kong, Gas permeability and porosity evolution of a porous sandstone under repeated loading and unloading conditions, Rock Mech. Rock Eng. 50 (8) (2017) 2071-2083, https://doi.org/10.1007/s00603-017-1215-1.
  16. C.L. Yan, Y. Chen, T.Q. Chen, Y.F. Cheng, X.J. Yan, Experimental study of hydraulic fracturing for unconsolidated reservoirs, Rock Mech. Rock Eng. 55 (6) (2022) 3399-3424, https://doi.org/10.1007/s00603-022-02827-6.
  17. X. Cui, Y. Fan, H. Wang, S. Huang, Experimental investigation of suspended particles transport in porous medium under variable temperatures, Hydrol. Process. 33 (7) (2019) 1117-1126, https://doi.org/10.1002/hyp.13390.
  18. M. He, X. Luo, F. Yu, P. Xia, Z. Teng, C. Wang, Influence of sand production damage in unconsolidated sandstone reservoirs on pore structure characteristics and oil recovery at the microscopic scale, ACS Omega 7 (44) (2022) 40387-40398, https://doi.org/10.1021/acsomega.2c05357.
  19. M.S.A. Perera, P.G. Ranjith, T.D. Rathnaweera, G.P.D. DE Silva, T. Liu, An experimental study to quantify sand production during oil recovery from unconsolidated quicksand formations, Petrol. Explor. Dev. 44 (5) (2017) 860-865, https://doi.org/10.1016/S1876-3804(17)30097-6.
  20. A.E. Radwan, D.A. Wood, A.M. Abudeif, M.M. Attia, M. Mahmoud, A.A. Kassem, M. Kania, Reservoir formation damage; Reasons and mitigation: a case study of the cambrian-ordovician nubian 'c' sandstone gas and oil reservoir from the gulf of suez rift basin, Arabian J. Sci. Eng. 47 (9) (2022) 11279-11296, https://doi.org/10.1007/s13369-021-06005-8.
  21. L.C. Li, S.L. Yang, H. Chen, Water and sand control technology successfully applied in jidong oilfield: a case study, Energy Sources Part a-Recovery Util, Environ. Eff. 35 (24) (2013) 2294-2301, https://doi.org/10.1080/15567036.2011.588676.
  22. J. Li, X. Li, M. Song, H. Liu, Y. Feng, C. Liu, Investigating microscopic seepage characteristics and fracture effectiveness of tight sandstones: a digital core approach, Petrol. Sci. 18 (1) (2021) 173-182, https://doi.org/10.1007/s12182-020-00464-8.
  23. J. Sun, S. Wu, J. Deng, Q. Li, Q. Fan, L. Ma, Y. Liu, Numerical simulation of channelization near the wellbore due to seepage erosion in unconsolidated sands during fluid injection, Geofluids 2021 (2021) 1-13, https://doi.org/10.1155/2021/6634886.
  24. Y. Hao, J. Liang, C. Kong, M. Fan, H. Xu, F. Yang, S. Yang, Study on the influence of sand production on seepage capacity in natural gas hydrate reservoirs, Geofluids 2021 (2021) 1-8, https://doi.org/10.1155/2021/6647647.
  25. S. Matula, G.B. Mekonnen, K. Batkova, K. Nesetril, Simulations of groundwater-surface water interaction and particle movement due to the effect of weir construction in the sub-watershed of the river labe in the town of decin, Environ. Monit. Assess. 186 (11) (2014) 7755-7770, https://doi.org/10.1007/s10661-014-3964-6.
  26. Q. Ren, J. Pacheco, J. de Brito, Methods for the modelling of concrete mesostructures: a critical review, Constr. Build. Mater. 408 (2023), 133570, https://doi.org/10.1016/j.conbuildmat.2023.133570.
  27. Q. Liu, X. Cui, C. Zhang, S. Huang, Experimental investigation of suspended particles transport through porous media: particle and grain size effect, Environ. Technol. 37 (7) (2016) 854-864, https://doi.org/10.1080/09593330.2015.1088578.
  28. V.I. Malkovsky, A.A. Pek, Effect of elevated velocity of particles in groundwater flow and its role in colloid-facilitated transport of radionuclides in underground medium, Transport Porous Media 78 (2) (2009) 277-294, https://doi.org/10.1007/s11242-008-9299-4.
  29. L. Wei, Y. Xinjiang, L. Hai, Z. Bao, L. Xiaogang, D. Jingen, Experimental investigation of sand production in moderately consolidated sandstones, Pet. Sci. Bull. 6 (1) (2021) 67-78, https://doi.org/10.3969/j.issn.2096-1693.2021.01.006.
  30. M. Yan, J. Deng, B. Yu, M. Li, B. Zhang, Q. Xiao, D. Tian, Comparative study on sanding characteristics between weakly consolidated sandstones and unconsolidated sandstones, J. Nat. Gas Sci. Eng. 76 (2020), 103183, https://doi.org/10.1016/j.jngse.2020.103183.
  31. H.S. Rabbani, V. Joekar-Niasar, N. Shokri, Effects of intermediate wettability on entry capillary pressure in angular pores, J. Colloid Interface Sci. 473 (2016) 34-43, https://doi.org/10.1016/j.jcis.2016.03.053.
  32. K. Huang, F. Yu, W. Zhang, K.W. Tong, J.H. Guo, S.C. Li, S.X. Chen, Z.J. Dai, Relationship between capillary water absorption mechanism and pore structure and microfracture of red-layer mudstone in central sichuan, Bull. Eng. Geol. Environ. 82 (4) (2023) 100, https://doi.org/10.1007/s10064-023-03115-5.
  33. J. Hu, Q. Jiang, Q. Ren, X. Ding, Cross scale correlation characteristics of pore structure and meso parameters of filling body, Chin. J. Nonferrous Metals 28 (10) (2018) 2154-2163, https://doi.org/10.19476/j.ysxb.1004.0609.2018.10.24.
  34. J. Hu, Q. Ren, D. Yang, S. Ma, J. Shang, X. Ding, Z. Luo, Cross-scale characteristics of backfill material using NMR and fractal theory, T. Nonferr. Metal. Soc. 30 (5) (2020) 1347-1363, https://doi.org/10.1016/S1003-6326(20)65301-8.
  35. A. Yiotis, N.K. Karadimitriou, I. Zarikos, H. Steeb, Pore-scale effects during the transition from capillary- to viscosity-dominated flow dynamics within microfluidic porous-like domains, Sci. Rep. 11 (1) (2021) 3891, https://doi.org/10.1038/s41598-021-83065-8.
  36. Iso, Geotechnical investigation and testing - identification and classification of soil - part 1: identification and description, in: I. TC (Ed.), ISO 14688-1:2017, International Organization for Standardization, Geneva, 2017, p. 23.
  37. L. Xinyuan, L. Xuehui, Microstructure analysis of the liquid index of soft cohesive soils, Soil Eng. Found. 27 (2) (2013) 104-107, https://doi.org/10.3969/j.issn.1004-3152.2013.02.029.