DOI QR코드

DOI QR Code

Application of AC superimposed DC waveforms to bismuth electrorefining

  • Greg Chipman (Department of Chemical Engineering, Brigham Young University) ;
  • Bryant Johnson (Department of Chemical Engineering, Brigham Young University) ;
  • Devin Rappleye (Department of Chemical Engineering, Brigham Young University)
  • Received : 2023.06.26
  • Accepted : 2023.11.20
  • Published : 2024.04.25

Abstract

Electrorefining in molten salts is used for purifying actinides. Optimizing electrorefining is key to minimizing processing time and radiological waste. One possible way of improving electrorefining efficiency is using an AC superimposed DC waveform. This waveform has demonstrated potential benefits in aqueous solutions but has never been utilized in a molten metal, molten salt application. This work investigates the effects of using an AC superimposed DC waveform on molten bismuth electrorefining in a molten LiCl-KCl-CaCl2 eutectic. Bismuth has been identified as a potential surrogate for plutonium electrorefining and a potential cathode in electrorefining used nuclear fuel (UNF). All electrorefining runs resulted in a high purity cathode ring and high yield with exception of the run using a low-frequency, high-amplitude superimposed AC waveform, which experienced some contamination and a lower yield. The other three AC superimposed DC runs experienced an average yield 6.7 % higher than the average yield of the DC runs. The electrorefining run using the high-frequency, high-amplitude superimposed AC signal had the highest yield. It is recommended in future studies to investigate the statistical variability of electrorefining yield and current efficiency and the impact of AC superimposed DC waveforms on solidified bismuth anodes.

Keywords

Acknowledgement

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The authors also wish to acknowledge the support of Chao Zhang and David Roberts for their technical advice.

References

  1. V.A. Ettel, B.V. Tilak, Electrolytic refining and winning of metals, in: J.O. Bockris, B.E. Conway, E. Yeager, R.E. White (Eds.), Comprehensive Treatise of Electrochemistry: Electrochemical Processing, Springer US, Boston, MA, 1981, pp. 327-380, https://doi.org/10.1007/978-1-4684-3785-0_6. 
  2. H. Wendt, H. Vogt, G. Kreysa, H. Goldacker, K. Juttner, U. Galla, H. Schmieder, Electrochemistry, 2. Inorganic electrochemical processes, in: Ullmann's Encyclopedia of Industrial Chemistry, John Wiley & Sons, Ltd, 2011, https://doi.org/10.1002/14356007.o09_o03. 
  3. 26 - Development of Pyrochemical Separation Processes for Recovery of Actinides from Spent Nuclear Fuel in Molten LiCl-KCl | Elsevier Enhanc. Read, (n.d.). https://doi.org/10.1016/B978-0-12-398538-5.00026-3. 
  4. T. Paget, J.A. McNeese, K. Fife, M. Jackson, R. Watson, Chapter 6. Molten salt chemistry of plutonium, in: D.L. Clark (Ed.), Plutonium Handbook, second ed., American Nuclear Society, La Grange Park, IL, 2019. 
  5. P. Baron, S.M. Cornet, E.D. Collins, G. DeAngelis, G. Del Cul, Yu Fedorov, J. P. Glatz, V. Ignatiev, T. Inoue, A. Khaperskaya, I.T. Kim, M. Kormilitsyn, T. Koyama, J.D. Law, H.S. Lee, K. Minato, Y. Morita, J. Uhlir, D. Warin, R.J. Taylor, A review of separation processes proposed for advanced fuel cycles based on technology readiness level assessments, Prog. Nucl. Energy 117 (2019), 103091, https://doi.org/10.1016/j.pnucene.2019.103091. 
  6. L. Chen, G. Zhang, W. Shan, R. Liu, H. Liu, Potential oscillated electrochemical metal recovery system with improved conversion kinetics and high levelized quality, Environ. Sci. Technol. 55 (2021) 15380-15389, https://doi.org/10.1021/acs.est.1c03963. 
  7. S. Preusser, M. Cocivera, Electrodeposition of CdS using nonaqueous triphenylstibine sulfide, Sol. Energy Mater. 15 (1987) 175-187, https://doi.org/10.1016/0165-1633(87)90064-5. 
  8. D.-T. Chin, S. Venkatesh, A-C modulation of a rotating zinc electrode in an acid zinc-chloride solution, J. Electrochem. Soc. 128 (1981) 1439, https://doi.org/10.1149/1.2127658. 
  9. S.S. Abd El Rehim, The effect of superimposed a.c. on d.c. on the electrodeposition of Cu-Zn alloys, J. Appl. Electrochem. 8 (1978) 569-572, https://doi.org/10.1007/BF00610804. 
  10. Cartes, Christian, PROCESS FOR OPTIMIZING THE PROCESS OF COPPERELECTRO-WINNING AND ELECTRO-REFINING BY SUPERMPOSING A SINUSODAL CURRENT OVERA CONTINUOUS CURRENT, n.d.. 
  11. M.H. Fawzy, M.M. Ashour, A.M. Abd El-Halim, Effect of superimposed sinusoidal a. c. on the characteristics of electrodeposited Ni, Cu and Cu-Ni alloy composites with α-Al2O3 and TiO2, Transact. IMF 76 (1998) 193-202, https://doi.org/10.1080/00202967.1998.11871222. 
  12. S.S. Abd El Rehim, S.M. Abd El Wahaab, E.E. Fouad, H.H. Hassan, Effect of some variables on the electroplating of zinc from acidic acetate baths, J. Appl. Electrochem. 24 (1994) 350-354, https://doi.org/10.1007/BF00242065. 
  13. Z. Kovac, The effect of superimposed A.C. On D.C. In electrodeposition of Ni-Fe alloys, J. Electrochem. Soc. 118 (1971) 51, https://doi.org/10.1149/1.2407950. 
  14. S.S. Abd El Rehim, M.A.M. Ibrahim, S.M. Abd El Wahaab, M.M. Dankeria, Effect of some plating parameters on the electrodeposition of Zn-Co alloys from aqueous citrate baths, Transact. IMF 77 (1999) 31-36, https://doi.org/10.1080/00202967.1999.11871240. 
  15. S.S.A. El Rehim, E.E. Fouad, S.M.A. El Wahab, HamdyH. Hassan, Electroplating of zinc-nickel binary alloys from acetate baths, Electrochim. Acta 41 (1996) 1413-1418, https://doi.org/10.1016/0013-4686(95)00327-4. 
  16. A.M. Abd El-Halim, A.O. Baghlaf, M.I. Sobahi, Influence of a superimposed a.c. on cadmium electroplating from an acidic chloride bath, Surf. Technol. 22 (1984) 143-154, https://doi.org/10.1016/0376-4583(84)90050-5. 
  17. S.N. Srimathi, B.S. Sheshadri, S.M. Mayanna, Electroplating of thin films of Fe-Ni alloys: some effects of superimposed alternating current on direct current, Surf. Technol. 17 (1982) 217-227, https://doi.org/10.1016/0376-4583(82)90004-8. 
  18. S.N. Srimathi, S.M. Mayanna, B.S. Sheshadri, Electrodeposition of binary magnetic alloys, Surf. Technol. 16 (1982) 277-322, https://doi.org/10.1016/0376-4583(82)90021-8. 
  19. S.M. Abd El Wahaab, A.M. Abd El-Halim, S.S. Abd El Rehim, E.A. Abd El Meguid, Effect of bath constituents and superimposed sinusoidal A.C. on nickel electroplating from acidic acetate solutions, Surf. Coating. Technol. 29 (1986) 313-324, https://doi.org/10.1016/0257-8972(86)90004-6. 
  20. S.S. Abd El Rehim, A.M. Abd El-Halim, M.M. Osman, The effect of superimposing an a.c. on d.c. the electrodeposition of Co-Ni alloys from a Watts plating bath, Surf. Technol. 22 (1984) 337-342, https://doi.org/10.1016/0376-4583(84)90097-9. 
  21. B.S. Sheshadri, T.H.V. Setty, The effect of superimposed ac on dc in electrocrystallization of copper on copper single crystal planes, J. Cryst. Growth 21 (1974) 110-116, https://doi.org/10.1016/0022-0248(74)90158-4. 
  22. R. Vijayavalli, P.V.V. Rao, S. Sampath, H.V.K. Udupa, Function of A.C. Superimposed on D.C. In the anodic oxidation of lead in sulfuric acid, J. Electrochem. Soc. 110 (1963) 1, https://doi.org/10.1149/1.2425664. 
  23. B.S. Sheshadri, V. Koppa, B.S. Jai Prakash, S.M. Mayanna, The effect of the superposition of an alternating current on a direct current on the electrodeposition of Ni-Fe alloys, Surf. Technol. 13 (1981) 111-117, https://doi.org/10.1016/0376-4583(81)90051-0. 
  24. V.J. Marchese, Stress reduction of electrodeposited nickel, J. Electrochem. Soc. 99 (1952) 39, https://doi.org/10.1149/1.2779662. 
  25. F.H. Hurley, T.P. Wier, The electrodeposition of aluminum from nonaqueous solutions at room temperature, J. Electrochem. Soc. 98 (1951) 207, https://doi.org/10.1149/1.2778133. 
  26. M. Starykevich, A.N. Salak, D.K. Ivanou, K.A. Yasakau, P.S. Andre, R.a.S. Ferreira, M.L. Zheludkevich, M.G.S. Ferreira, Effect of the anodic titania layer thickness on electrodeposition of zinc on Ti/TiO2 from deep eutectic solvent, J. Electrochem. Soc. 164 (2017) D88, https://doi.org/10.1149/2.1351702jes. 
  27. J.J. Laidler, J.E. Battles, W.E. Miller, J.P. Ackerman, E.L. Carls, Development of pyroprocessing technology, Prog. Nucl. Energy 31 (1997) 131-140, https://doi.org/10.1016/0149-1970(96)00007-8. 
  28. M. Gibilaro, S. Bolmont, L. Massot, L. Latapie, P. Chamelot, On the use of liquid metals as cathode in molten fluorides, J. Electroanal. Chem. 726 (2014) 84-90, https://doi.org/10.1016/j.jelechem.2014.05.014. 
  29. G.L. Fredrickson, T.-S. Yoo, Liquid cadmium cathode performance model based on the equilibrium behaviors of U and Pu in molten LiCl-KCl/Cd system at 500◦C, J. Nucl. Mater. 528 (2020), 151883, https://doi.org/10.1016/j.jnucmat.2019.151883. 
  30. J. Serp, P. Lefebvre, R. Malmbeck, J. Rebizant, P. Vallet, J.-P. Glatz, Separation of plutonium from lanthanum by electrolysis in LiCl-KCl onto molten bismuth electrode, J. Nucl. Mater. 340 (2005) 266-270, https://doi.org/10.1016/j.jnucmat.2004.12.004. 
  31. T. Yin, Y. Liu, S. Jiang, Y. Yan, G. Wang, Z. Chai, W. Shi, Kinetic properties and electrochemical separation of uranium on liquid bismuth electrode in LiCl-KCl melt, J. Electrochem. Soc. 168 (2021), 032503, https://doi.org/10.1149/1945-7111/abeb28. 
  32. T.P. Nigl, T. Lichtenstein, Y. Kong, H. Kim, Electrochemical separation of alkaline-earth elements from molten salts using liquid metal electrodes, ACS Sustainable Chem. Eng. 8 (2020) 14818-14824, https://doi.org/10.1021/acssuschemeng.0c04249. 
  33. G. Chipman, B. Johnson, S. Choi, C. Zhang, M. Simpson, D. Rappleye, Determination of a surrogate for plutonium electrorefining, J. Nucl. Mater. 586 (2023), 154680, https://doi.org/10.1016/j.jnucmat.2023.154680. 
  34. K. Yasuda, T. Nohira, Y.H. Ogata, Y. Ito, Electrochemical window of molten LiCl-KCl-CaCl2 and the Ag+/Ag reference electrode, Electrochim. Acta 51 (2005) 561-565, https://doi.org/10.1016/j.electacta.2005.05.014. 
  35. J.A. Plambeck, Electromotive force series in molten salts, J. Chem. Eng. Data 12 (1967) 77-82, https://doi.org/10.1021/je60032a023. 
  36. H. Kim, N. Smith, K. Kumar, T. Lichtenstein, Electrochemical separation of barium into liquid bismuth by controlling deposition potentials, Electrochim. Acta 220 (2016) 237-244, https://doi.org/10.1016/j.electacta.2016.10.083. 
  37. R.T. Carlin, R.A. Osteryoung, Deposition studies of lithium and bismuth at tungsten microelectrodes in LiCl : KCl eutectic, J. Electrochem. Soc. 136 (1989) 1249-1255, https://doi.org/10.1149/1.2096900. 
  38. P. Okabe, D. Rappleye, M. Newton, M.F. Simpson, Development of metallic nuclear material purification process via simultaneous chlorination and volatilization, J. Nucl. Mater. 543 (2021), 152626, https://doi.org/10.1016/j.jnucmat.2020.152626. 
  39. PubChem, Aluminum Chloride, (n.d.). https://pubchem.ncbi.nlm.nih.gov/compound/24012 (accessed May 25, 2023).. 
  40. L.J. Mullins, A.N. Morgan, Review of Operating Experience at the Los Alamos Plutonium Electrorefining Facility, 1981, https://doi.org/10.2172/5555056, 1963-1977. 
  41. B.A. Mazzeo, Parasitic capacitance influence of potential-sensing electrodes on four-electrode liquid impedance measurements, J. Appl. Phys. 105 (2009), 094106, https://doi.org/10.1063/1.3124365. 
  42. B.L. Mellor, E.C. Cortes, S. Khadka, B.A. Mazzeo, Increased bandwidth for dielectric spectroscopy of proteins through electrode surface preparation, Rev. Sci. Instrum. 83 (2012), 015110, https://doi.org/10.1063/1.3678324.