DOI QR코드

DOI QR Code

Autonomous exploration for radioactive sources localization based on radiation field reconstruction

  • Xulin Hu (Robot Technology Used for Special Environment Key Laboratory of Sichuan Province, Southwest University of Science and Technology) ;
  • Junling Wang (School of National Defense Science, Southwest University of Science and Technology) ;
  • Jianwen Huo (Robot Technology Used for Special Environment Key Laboratory of Sichuan Province, Southwest University of Science and Technology) ;
  • Ying Zhou (Mianyang Central Hospital, NHC Key Laboratory of Nuclear Technology Medical Transformation) ;
  • Yunlei Guo (Robot Technology Used for Special Environment Key Laboratory of Sichuan Province, Southwest University of Science and Technology) ;
  • Li Hu (Robot Technology Used for Special Environment Key Laboratory of Sichuan Province, Southwest University of Science and Technology)
  • Received : 2023.05.17
  • Accepted : 2023.11.09
  • Published : 2024.04.25

Abstract

In recent years, unmanned ground vehicles (UGVs) have been used to search for lost or stolen radioactive sources to avoid radiation exposure for operators. To achieve autonomous localization of radioactive sources, the UGVs must have the ability to automatically determine the next radiation measurement location instead of following a predefined path. Also, the radiation field of radioactive sources has to be reconstructed or inverted utilizing discrete measurements to obtain the radiation intensity distribution in the area of interest. In this study, we propose an effective source localization framework and method, in which UGVs are able to autonomously explore in the radiation area to determine the location of radioactive sources through an iterative process: path planning, radiation field reconstruction and estimation of source location. In the search process, the next radiation measurement point of the UGVs is fully predicted by the design path planning algorithm. After obtaining the measurement points and their radiation measurements, the radiation field of radioactive sources is reconstructed by the Gaussian process regression (GPR) model based on machine learning method. Based on the reconstructed radiation field, the locations of radioactive sources can be determined by the peak analysis method. The proposed method is verified through extensive simulation experiments, and the real source localization experiment on a Cs-137 point source shows that the proposed method can accurately locate the radioactive source with an error of approximately 0.30 m. The experimental results reveal the important practicality of our proposed method for source autonomous localization tasks.

Keywords

Acknowledgement

This research was funded by the National Natural Science Foundation of China (No.12205245), Natural Science Foundation of Sichuan Province (No.2023NSFSC1437), NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital) (No. 2021HYX16), and State Administration of Science, Technology and Industry for National Defense (No. JCKY2020404C001).

References

  1. IAEA Incident and Trafficking Database (ITDB). Incidents of Nuclear and Other Radioactive Material Out of Regulatory Control. Available online: https://www.iaea.org/sites/default/files/22/01/itdb-factsheet.pdf (accessed on 10 February 2023)..
  2. Y. Zhou, N. Yu, J. Wang, W. Chen, P. Cai, Review of the 5⋅7 Nanjing 192Ir source radiological accident, Radiation Medicine and Protection 3 (4) (2022) 190-195. https://doi.org/10.1016/j.radmp.2022.10.001
  3. J.W. Howse, L.O. Ticknor, K.R. Muske, Least squares estimation techniques for position tracking of radioactive sources, Automatica 37 (11) (2001) 1727-1737. https://doi.org/10.1016/S0005-1098(01)00134-0
  4. Y. Huang, J. Benesty, G.W. Elko, R.M. Mersereati, Real-time passive source localization: a practical linear-correction least-squares approach, IEEE Trans. Speech Audio Process. 9 (8) (2001) 943-956. https://doi.org/10.1109/89.966097
  5. N.S.V. Rao, M. Shankar, J.C. Chin, D.K. Yau, S. Srivathsan, S.S. Iyengar, Identification of low-level point radiation sources using a sensor network, in: 2008 International Conference on Information Processing in Sensor Networks (IPSN), IEEE, 2008, pp. 493-504, 2008.
  6. A.H.W. Liu, Simulation and Implementation of Distributed Sensor Network for Radiation Detection, California Institute of Technology, 2010.
  7. H.E. Baidoo-Williams, Maximum Likelihood Localization of Radiation Sources with Unknown Source Intensity, 2016 arXiv preprint arXiv:1608.00427.
  8. E. Bai, A. Heifetz, P. Raptis, S. Dasgupta, R. Mudumbai, Maximum likelihood localization of radioactive sources against a highly fluctuating background, IEEE Trans. Nucl. Sci. 62 (6) (2015) 3274-3282. https://doi.org/10.1109/TNS.2015.2497327
  9. A. Gunatilaka, B. Ristic, R. Gailis, On localisation of a radiological point source, in: 2007 Information, Decision and Control, IEEE, 2007, pp. 236-241, 2007.
  10. J. Huo, M. Liu, K.A. Neusypin, H. Liu, M. Guo, Y. Xiao, Autonomous search of radioactive sources through mobile robots, Sensors 20 (12) (2020) 3461.
  11. M.P. De, I. Hoffman, Bayesian source reconstruction of an anomalous Selenium-75 release at a nuclear research institute, J. Environ. Radioact. 218 (2020), 106225.
  12. P. Xu, C. Fu, Z.Y. Tan, X.F. Cai, J. Qin, Robust radioactive sources research method using possibility particle filter, AIP Adv. 11 (8) (2021), 085308.
  13. M. Ling, J. Huo, G.V. Moiseev, L. Hu, Y. Xiao, Multi-robot collaborative radioactive source search based on particle fusion and adaptive step size, Ann. Nucl. Energy 173 (2022), 109104.
  14. M.R. Morelande, B. Ristic, Radiological source detection and localisation using Bayesian techniques, IEEE Trans. Signal Process. 57 (11) (2009) 4220-4231. https://doi.org/10.1109/TSP.2009.2026618
  15. M. Morelande, B. Ristic, A. Gunatilaka, Detection and parameter estimation of multiple radioactive sources, in: Proceedings of the 10th International Conference on Information Fusion, Quebec, AB, Canada, 9-12 July 2007, 2007, pp. 1-7.
  16. N.A. Abd Rahman, K.S.M. Sahari, M.F.A. Jalal, A.A. Rahman, M.I. Abd Adziz, M. Z. Hassan, Mobile robot for radiation mapping in indoor environment, in: IOP Conference Series: Materials Science and Engineering, vol. 785, IOP Publishing, 2020, 012021, 1.
  17. P. Royo, E. Pastor, M. Macias, R. Cuadrado, C. Barrado, A. Vargas, An unmanned aircraft system to detect a radiological point source using RIMA software architecture, Rem. Sens. 10 (11) (2018) 1712.
  18. B. Li, Y. Zhu, Z. Wang, C. Li, Z.R. Peng, L. Ge, Use of multi-rotor unmanned aerial vehicles for radioactive source search, Rem. Sens. 10 (5) (2018) 728.
  19. X. Liu, L. Cheng, Y. Yang, G. Yan, X. Xu, Z. Zhang, An alpha/beta radiation mapping method using simultaneous localization and mapping for nuclear power plants, Machines 10 (9) (2022) 800.
  20. T. Kishimoto, H. Woo, R. Komatsu, Y. Tamura, H. Tomita, K. Shimazoe, A. Yamashita, H. Asama, Path planning for localization of radiation sources based on principal component analysis, Appl. Sci. 11 (10) (2021) 4707.
  21. S. Li, R. Kong, Y. Guo, Cooperative distributed source seeking by multiple robots: algorithms and experiments, IEEE/ASME Trans. mech. 19 (6) (2014) 1810-1820. https://doi.org/10.1109/TMECH.2013.2295036
  22. P. Proctor, C. Teuscher, A. Hecht, M. Osinski, ' Proximal policy optimization for radiation source search, J. Nucl. Eng. 2 (4) (2021) 368-397. https://doi.org/10.3390/jne2040029
  23. Z. Liu, S. Abbaszadeh, Double Q-learning for radiation source detection, Sensors 19 (4) (2019) 960.
  24. Y. Ji, Y. Zhao, B. Chen, Z. Zhu, Y. Liu, H. Zhu, S. Qiu, Source searching in unknown obstructed environments through source estimation, target determination, and path planning, Build. Environ. 221 (2022), 109266.
  25. H. Tomita, S. Hara, A. Mukai, K. Yamagishi, H. Ebi, K. Shimazoe, Y. Tamura, H. Woo, H. Takahashi, H. Asama, F. Ishida, E. Takada, J. Kawarabayashi, K. Tanabe, K. Kamada, Path-planning system for radioisotope identification devices using 4π gamma imaging based on random forest analysis, Sensors 22 (12) (2022) 4325.
  26. H.I. Lin, Search strategy of a mobile robot for radiation sources in an unknown environment, in: 2014 International Conference on Advanced Robotics and Intelligent Systems (ARIS), IEEE, 2014, pp. 56-60, 2014.
  27. S. Agostinelli, J. Allison, K.A. Amako, J. Apostolakis, H. Araujo, P. Arce, Geant4 Collaboration, GEANT4-a simulation toolkit, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 506 (3) (2003) 250-303. https://doi.org/10.1016/S0168-9002(03)01368-8
  28. C.K. Williams, C.E. Rasmussen, Gaussian Process for Machine Learning, MIT Press, Cambridge, MA, USA, 2006.
  29. L. Mones, N. Bernstein, G. Csanyi, ' Exploration, sampling, and reconstruction of free energy surfaces with Gaussian process regression, J. Chem. Theor. Comput. 12 (10) (2016) 5100-5110. https://doi.org/10.1021/acs.jctc.6b00553
  30. A.J.J. Bos, Fundamentals of radiation dosimetry, AIP Conf. Proc. Am. Instit. Phys. 1345 (1) (2011) 5-23.
  31. B. Ristic, M. Morelande, A. Gunatilaka, Information driven search for point sources of gamma radiation, Signal Process. 90 (2010) 1225-1239. https://doi.org/10.1016/j.sigpro.2009.10.006
  32. J. Huo, X. Hu, J. Wang, L. Hu, ACA: automatic search strategy for radioactive source, Nucl. Eng. Technol. 55 (2023) 3030-3038.
  33. J. Towler, B. Krawiec, K. Kochersberger, Radiation mapping in post-disaster environments using an autonomous helicopter, Rem. Sens. 4 (7) (2012) 1995-2015. https://doi.org/10.3390/rs4071995
  34. A.A.R. Newaz, S. Jeong, H. Lee, H. Ryu, N.Y. Chong, M.T. Mason, Fast radiation mapping and multiple source localization using topographic contour map and incremental density estimation, in: 2016 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2016, pp. 1515-1521, 2016.