DOI QR코드

DOI QR Code

Simulations for the cesium dynamics of the RF-driven prototype ion source for CRAFT N-NBI

  • Yalong Yang (Anhui Province Key Laboratory of Intelligent Building and Building Energy Saving, Anhui Jianzhu University) ;
  • Yong Wu (Anhui Province Key Laboratory of Intelligent Building and Building Energy Saving, Anhui Jianzhu University) ;
  • Lizhen Liang (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • Jianglong Wei (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • Rui Zhang (Anhui Province Key Laboratory of Intelligent Building and Building Energy Saving, Anhui Jianzhu University) ;
  • Yahong Xie (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • Wei Liu (Institute of Plasma Physics, Chinese Academy of Sciences) ;
  • Chundong Hu (Institute of Plasma Physics, Chinese Academy of Sciences)
  • Received : 2023.08.22
  • Accepted : 2023.11.08
  • Published : 2024.04.25

Abstract

To realize an initial objective of the negative ion-based neutral beam injection (N-NBI) at the Comprehensive Research Facility for Fusion Technology (CRAFT) test facility, which targets an H0 beam power of 2 MW at an energy of 200-400 keV and a pulse duration of 100 s, it is crucial to study the cesium dynamics of the negative ion source. Here a numerical simulation program CSFC3D is developed and applied to simulate the distribution and time dynamics of cesium during short pulses. The calculations show that most of the cesium on the plasma grid (PG) area originates from the release of cesium that is accumulated within the ion source in the plasma phase. Increasing the wall temperature reduces the loss of cesium on the wall of the ion source. Furthermore, the thickness of the cesium monolayer is directly influenced by the PG temperature. Both simulated and experimental results demonstrate that maintaining the PG temperature between 180 ℃ and 200 ℃ is essential for enhancing the performance of the ion source and optimizing the cesium behavior.

Keywords

Acknowledgement

The authors are very grateful to the other members of the ASIPP NBI team for their continuous support and excellent work. This work was partly supported by the HFIPS Director's Fund (YZJJQY202204, 2021YZGH02), the National Natural Science Foundation of China (Contract No. 11975264), the Comprehensive Research Facility for Fusion Technology Program of China (Contract No. 2018-000052-73-01-001228), the Science Foundation of institute of Plasma Physics, Chinese Academy of Sciences (No. DSJJ-2023-07) and the University Synergy Innovation Program of Anhui Province (GXXT-2022-003).

References

  1. V.S. Chan, et al., Nucl. Fusion 55 (2015), 023017, https://doi.org/10.1088/0029-5515/55/2/023017. 
  2. R. Aymar, et al., Plasma Phys. Contr. Fusion 44 (2002) 519, https://doi.org/10.1088/0741-3335/44/5/304.
  3. J.X. Zheng, et al., The Innovation, 2022, 100269, https://doi.org/10.1016/j.xinn.2022.100269. 
  4. J.G. Li, et al., J. Fusion Energy 38 (2019) 113, https://doi.org/10.1007/s10894-018-0165-2. 
  5. K. Ikeda, et al., Nucl. Fusion 59 (2019), 076009, https://doi.org/10.1088/1741-4326/ab0fca. 
  6. K. Tsumori, et al., Nucl. Fusion 62 (2022), 056016, https://doi.org/10.1088/1741-4326/ac2d59. 
  7. S. Ishida, et al., Nucl. Fusion 51 (2011), 094018, https://doi.org/10.1088/0029-5515/51/9/094018. 
  8. M. Kashiwagi, et al., Nucl. Fusion 62 (2022), 026025, https://doi.org/10.1088/1741-4326/ac388a. 
  9. U. Fantz, et al., Rev. Sci. Instrum. 87 (2016), 02B307, https://doi.org/10.1063/1.4932560. 
  10. Y.W. Yang, et al., Nucl. Eng. Technol. 55 (2023) 939, https://doi.org/10.1016/j.net.2022.12.002. 
  11. J.L. Wei, et al., Phys. Plasmas 30 (2023), 033102, https://doi.org/10.1063/5.0139827. 
  12. J.L. Wei, et al., Fusion Eng. Des. 169 (2021), 112482, https://doi.org/10.1016/j.fusengdes.2021.112482. 
  13. Y.H. Xie, et al., Fusion Eng. Des. 167 (2021), 112377, https://doi.org/10.1016/j.fusengdes.2021.112377. 
  14. M. Bacal, Volume production of hydrogen negative ions, in: M. Capitelli, J. N. Bardsley (Eds.), Nonequilibrium Processes in Partially Ionized Gases, Springer US, Boston, MA, 1990, pp. 213-226. 
  15. Y.I. Belchenko, et al., Nucl. Fusion 14 (1974) 113, https://doi.org/10.1088/0029-5515/14/1/017. 
  16. R. Gutser, Experiments and Simulations for the Dynamics of Cesium in Negative Hydrogen Ion Sources for ITER N-NBI, PhD Diss, Universit at Augsburg, 2010. 
  17. M. Yoshida, et al., Fusion Eng. Des. 96 (2015) 616, https://doi.org/10.1016/j.fusengdes.2015.06.152. 
  18. M. Yoshida, et al., Rev. Sci. Instrum. 87 (2016), 02B322, https://doi.org/10.1063/1.4934584. 
  19. R. Hemsworth, et al., Nucl. Fusion 49 (2009), 045006, https://doi.org/10.1088/0029-5515/49/4/045006. 
  20. R.G. Wilson, J. Appl. Phys. 37 (1966) 3161, https://doi.org/10.1063/1.1703179. 
  21. R.G. Wilson, J. Appl. Phys. 37 (1966) 4125, https://doi.org/10.1063/1.1707987. 
  22. C. Wimmer, Characteristics and Dynamics of the Boundary Layer in RF-Driven Sources for Negative Hydrogen Ions, PhD Diss, Universit at Augsburg, 2014. 
  23. R. Friedl, Experimental Investigations on the Caesium Dynamics in H2/D2 Low Temperature Plasmas, PhD Diss, Universitat Augsburg, 2014. 
  24. F. Taccogna, et al., Rev. Sci. Instrum. 87 (2016), 02B306, https://doi.org/10.1063/1.4932396. 
  25. C.K. Birdsall, IEEE Trans. Plasma Sci. 19 (1991) 65, https://doi.org/10.1109/27.106800. 
  26. T.W. Tuer, et al., Comput. Fluids 1 (1973) 399, https://doi.org/10.1016/0045-7930(73)90006-6. 
  27. A. Kirschner, et al., Nucl. Fusion 40 (2000) 989, https://doi.org/10.1088/0029-5515/40/5/311. 
  28. R.J. McKay, et al., Plasma Phys. Contr. Fusion 50 (2008), 065017, https://doi.org/10.1088/0741-3335/50/6/065017. 
  29. E. Speth, et al., Fusion Eng. Des. 46 (1999) 383, https://doi.org/10.1016/S0920-3796(99)00030-7. 
  30. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, M. Metcalf, Numerical Recipes in Fortran 90: Volume 2, Volume 2 of Fortran Numerical Recipes: the Art of Parallel Scientific Computing, Cambridge University Press, 1996. 
  31. A. Mimo, Optimization of Caesium Dynamics in Large and Powerful RF Sources for Negative Hydrogen Ions, PhD Diss, Universit at Augsburg, 2018. 
  32. U. Fantz, et al., Nucl. Fusion 46 (2006) S297, https://doi.org/10.1088/0029-5515/46/6/S10. 
  33. R. Gutser, et al., Plasma Phys. Contr. Fusion 53 (2011), 105014, https://doi.org/10.1088/0741-3335/53/10/105014. 
  34. W. Liu, et al., Energies 15 (2022) 4409, https://doi.org/10.3390/en15124409. 
  35. F.J. Alexander, et al., Comput. Phys. 11 (1997) 588, https://doi.org/10.1063/1.168619. 
  36. U. Fantz, et al., New J. Phys. 8 (2006) 301, https://doi.org/10.1088/1367-2630/8/12/301. 
  37. M. Lukomski, et al., Phys. Rev. A 74 (2006), 032708, https://doi.org/10.1103/PhysRevA.74.032708. 
  38. E.W. Rothe, et al., J. Chem. Phys. 31 (1959) 1619, https://doi.org/10.1063/1.1730662. 
  39. M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, John Wiley & Sons, New York, 2005. 
  40. S. Nishioka, et al., J. App. Phys. 123(6), 063302, https://doi.org/10.1063/1.5004074. 
  41. T. Fujimoto, J. Quant. Spectrosc. Radiat. Transf. 21 (1979) 439, https://doi.org/10.1016/0022-4073(79)90004-9. 
  42. M. Yoshida, et al., AIP Conf. Proc. 2052 (2018), 040008, https://doi.org/10.1063/1.5083742. 
  43. P.W. van Amersfoort, et al., J. App. Phys. 58 (1985) 2317, https://doi.org/10.1063/1.335953. 
  44. L. Schiesko, et al., Nucl. Fusion 51 (2011), 113021, https://doi.org/10.1088/0029-5515/51/11/113021. 
  45. C. Hopf, et al., J. App. Phys. 94 (2003) 2373, https://doi.org/10.1063/1.1594273. 
  46. L.W. Swanson, et al., J. Chem. Phys. 48 (1968) 2421, https://doi.org/10.1063/1.1669464. 
  47. C.A. Papageorgopoulos, et al., Surf. Sci. 39 (1973) 283, https://doi.org/10.1016/0039-6028(73)90003-4.