DOI QR코드

DOI QR Code

Performance of the BD MAX MDR-TB assay in a clinical setting and its impact on the clinical course of patients with pulmonary tuberculosis: a retrospective before-after study

  • Sung Jun Ko (Department of Internal Medicine, Wonkwang University Sanbon Hospital) ;
  • Kui Hyun Yoon (Department of Laboratory Medicine, Wonkwang University Sanbon Hospital) ;
  • Sang Hee Lee (Department of Internal Medicine, Wonkwang University Sanbon Hospital)
  • 투고 : 2024.01.04
  • 심사 : 2024.03.06
  • 발행 : 2024.04.30

초록

Background: Missing isoniazid (INH) resistance during tuberculosis (TB) diagnosis can worsen the outcomes of INH-resistant TB. The BD MAX MDR-TB assay (BD MAX) facilitates the rapid detection of TB and INH and rifampin (RIF) resistance; however, data related to its performance in clinical setting remain limited. Moreover, its effect on treatment outcomes has not yet been studied. Methods: We compared the performance of BD MAX for the detection of INH/RIF resistances to that of the line probe assay (LPA) in patients with pulmonary TB (PTB), using the results of a phenotypic drug sensitivity test as a reference standard. The treatment outcomes of patients who used BD MAX were compared with those of patients who did not. Results: Of the 83 patients included in the study, the BD MAX was used for an initial PTB diagnosis in 39 patients. The sensitivity of BD MAX for detecting PTB was 79.5%. The sensitivity and specificity of BD MAX for INH resistance were both 100%, whereas these were 50.0% and 95.8%, respectively, for RIF resistance. The sensitivity and specificity of BD MAX were comparable to those of LPA. The BD MAX group had a shorter time interval from specimen request to the initiation of anti-TB drugs (2.0 days vs. 5.5 days, p=0.001). Conclusion: BD MAX showed comparable performance to conventional tests for detecting PTB and INH/RIF resistances. The implementation of BD MAX as a diagnostic tool for PTB resulted in a shorter turnaround time for the initiation of PTB treatment.

키워드

참고문헌

  1. World Health Organization (WHO). Global tuberculosis report 2023 [Internet]. Geneva, Switzerland: WHO; 2023 [cited 2024 Jan 4]. https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023.
  2. Korea Disease Control and Prevention Agency (KDCA). Annual report on the notified tuberculosis in Korea, 2022 [Internet]. Cheongju, Korea: KDCA; 2023 [cited 2024 Jan 4]. https://www.kdca.go.kr/board/board.es?mid =a31001000000&bid=0130&act= view&list_no=723921&tag= &nPage=1.
  3. Jhun BW, Koh WJ. Treatment of isoniazid-resistant pulmonary tuberculosis. Tuberc Respir Dis (Seoul) 2020;83:20-30. https://doi.org/10.4046/trd.2019.0065
  4. Jhun BW, Huh HJ, Koh WJ. Diagnosis of pulmonary tuberculosis. J Korean Med Assoc 2019;62:18-24. https://doi.org/10.5124/jkma.2019.62.1.18
  5. Kim YW, Seong MW, Kim TS, Yoo CG, Kim YW, Han SK, et al. Evaluation of Xpert(®) MTB/RIF assay: diagnosis and treatment outcomes in rifampicin-resistant tuberculosis. Int J Tuberc Lung Dis 2015;19:1216-21. https://doi.org/10.5588/ijtld.15.0183
  6. World Health Organization (WHO). WHO consolidated guidelines on tuberculosis: module 3: diagnosis-rapid diagnostics for tuberculosis detection [Internet]. Geneva, Switzerland: WHO; 2020 [cited 2024 Jan 4]. https://www.who.int/publications/i/ item/9789240029415.
  7. Miotto P, Tessema B, Tagliani E, Chindelevitch L, Starks AM, Emerson C, et al. A standardised method for interpreting the association between mutations and phenotypic drug resistance in Mycobacterium tuberculosis. Eur Respir J 2017;50:1701354.
  8. Yadav RN, Kumar Singh B, Sharma R, Chaubey J, Sinha S, Jorwal P. Comparative performance of line probe assay (version 2) and Xpert MTB/RIF assay for early diagnosis of rifampicin-resistant pulmonary tuberculosis. Tuberc Respir Dis (Seoul) 2021;84:237-44. https://doi.org/10.4046/trd.2020.0171
  9. Nathavitharana RR, Cudahy PG, Schumacher SG, Steingart KR, Pai M, Denkinger CM. Accuracy of line probe assays for the diagnosis of pulmonary and multidrug-resistant tuberculosis: a systematic review and meta-analysis. Eur Respir J 2017; 49:1601075.
  10. World Health Organization (WHO). The use of molecular line probe assay for the detection of resistance to isoniazid and rifampicin: policy update [Internet]. Geneva, Switzerland: WHO; 2016 [cited 2024 Jan 4]. https://apps.who.int/iris/handle/10665/250586.
  11. World Health Organization (WHO). WHO consolidated guidelines on tuberculosis: module 4: treatment: drug-resistant tuberculosis treatment [Internet]. Geneva, Switzerland: WHO; 2020 [cited 2024 Jan 4]. https://www.who.int/publications/i/item/9789240007048.
  12. Menzies D, Benedetti A, Paydar A, Royce S, Madhukar P, Burman W, et al. Standardized treatment of active tuberculosis in patients with previous treatment and/or with mono-resistance to isoniazid: a systematic review and meta-analysis. PLoS Med 2009;6:e1000150.
  13. Gegia M, Winters N, Benedetti A, van Soolingen D, Menzies D. Treatment of isoniazid-resistant tuberculosis with first-line drugs: a systematic review and meta-analysis. Lancet Infect Dis 2017;17:223-34. https://doi.org/10.1016/S1473-3099(16)30407-8
  14. Romanowski K, Campbell JR, Oxlade O, Fregonese F, Menzies D, Johnston JC. The impact of improved detection and treatment of isoniazid resistant tuberculosis on prevalence of multidrug resistant tuberculosis: a modelling study. PLoS One 2019;14:e0211355.
  15. Shah M, Paradis S, Betz J, Beylis N, Bharadwaj R, Caceres T, et al. Multicenter study of the accuracy of the BD MAX multidrug-resistant tuberculosis assay for detection of mycobacterium tuberculosis complex and mutations associated with resistance to rifampin and isoniazid. Clin Infect Dis 2020;71:1161-7. https://doi.org/10.1093/cid/ciz932
  16. Beutler M, Plesnik S, Mihalic M, Olbrich L, Heinrich N, Schumacher S, et al. A pre-clinical validation plan to evaluate analytical sensitivities of molecular diagnostics such as BD MAX MDR-TB, Xpert MTB/Rif Ultra and FluoroType MTB. PLoS One 2020;15:e0227215.
  17. Ciesielczuk H, Kouvas N, North N, Buchanan R, Tiberi S. Evaluation of the BD MAXTM MDR-TB assay in a real-world setting for the diagnosis of pulmonary and extra-pulmonary TB. Eur J Clin Microbiol Infect Dis 2020;39:1321-7. https://doi.org/10.1007/s10096-020-03847-2
  18. Hofmann-Thiel S, Plesnik S, Mihalic M, Heiss-Neumann M, Avsar K, Beutler M, et al. Clinical evaluation of BD MAX MDRTB assay for direct detection of mycobacterium tuberculosis complex and resistance markers. J Mol Diagn 2020;22:1280-6. https://doi.org/10.1016/j.jmoldx.2020.06.013
  19. Linh NN, Viney K, Gegia M, Falzon D, Glaziou P, Floyd K, et al. World Health Organization treatment outcome definitions for tuberculosis: 2021 update. Eur Respir J 2021;58:2100804.
  20. Ko Y, Lee HK, Lee YS, Kim MY, Shin JH, Shim EJ, et al. Accuracy of Xpert(®) MTB/RIF assay compared with AdvanSureTM TB/NTM real-time PCR using bronchoscopy specimens. Int J Tuberc Lung Dis 2016;20:115-20. https://doi.org/10.5588/ijtld.15.0227
  21. Son E, Jang J, Kim T, Jang JH, Chung JH, Seol HY, et al. Headto-head comparison between Xpert MTB/RIF assay and real-time polymerase chain reaction assay using bronchial washing specimens for tuberculosis diagnosis. Tuberc Respir Dis (Seoul) 2022;85:89-95. https://doi.org/10.4046/trd.2021.0100
  22. Lee HY, Seong MW, Park SS, Hwang SS, Lee J, Park YS, et al. Diagnostic accuracy of Xpert® MTB/RIF on bronchoscopy specimens in patients with suspected pulmonary tuberculosis. Int J Tuberc Lung Dis 2013;17:917-21. https://doi.org/10.5588/ijtld.12.0885
  23. Jo YS, Park JH, Lee JK, Heo EY, Chung HS, Kim DK. Discordance between MTB/RIF and real-time tuberculosis-specific polymerase chain reaction assay in bronchial washing specimen and its clinical implications. PLoS One 2016;11:e0164923.
  24. Kwak SH, Choi JS, Lee EH, Lee SH, Leem AY, Lee SH, et al. Characteristics and risk factors associated with missed diagnosis in patients with smear-negative pulmonary tuberculosis. Korean J Intern Med 2021;36(Suppl 1):S151-9. https://doi.org/10.3904/kjim.2019.435
  25. Kwak N, Choi SM, Lee J, Park YS, Lee CH, Lee SM, et al. Diagnostic accuracy and turnaround time of the Xpert MTB/RIF assay in routine clinical practice. PLoS One 2013;8:e77456.
  26. Kim J, Kwak N, Lee HY, Kim TS, Kim CK, Han SK, et al. Effect of drug resistance on negative conversion of sputum culture in patients with pulmonary tuberculosis. Int J Infect Dis 2016;42:64-8. https://doi.org/10.1016/j.ijid.2015.11.018
  27. Singh BK, Sharma R, Kodan P, Soneja M, Jorwal P, Nischal N, et al. Diagnostic evaluation of non-interpretable results associated with rpoB gene in genotype MTBDRplus ver 2.0. Tuberc Respir Dis (Seoul) 2020;83:289-94. https://doi.org/10.4046/trd.2020.0039
  28. Rufai SB, Kumar P, Singh A, Prajapati S, Balooni V, Singh S. Comparison of Xpert MTB/RIF with line probe assay for detection of rifampin-monoresistant Mycobacterium tuberculosis. J Clin Microbiol 2014;52:1846-52. https://doi.org/10.1128/JCM.03005-13
  29. Hughes D, Brandis G. Rifampicin resistance: fitness costs and the significance of compensatory evolution. Antibiotics (Basel) 2013;2:206-16. https://doi.org/10.3390/antibiotics2020206
  30. Zetola NM, Shin SS, Tumedi KA, Moeti K, Ncube R, Nicol M, et al. Mixed Mycobacterium tuberculosis complex infections and false-negative results for rifampin resistance by GeneXpert MTB/RIF are associated with poor clinical outcomes. J Clin Microbiol 2014;52:2422-9. https://doi.org/10.1128/JCM.02489-13
  31. Georghiou SB, Schumacher SG, Rodwell TC, Colman RE, Miotto P, Gilpin C, et al. Guidance for studies evaluating the accuracy of rapid tuberculosis drug-susceptibility tests. J Infect Dis 2019;220(Suppl 3):S126-35. https://doi.org/10.1093/infdis/jiz106