DOI QR코드

DOI QR Code

Triple two-level inverter with high DC-voltage conversion ratio and capacitor voltage self-balancing

  • Bihua Hu (School of Automation and Electronic Information, Xiangtan University) ;
  • Mengzhou Zhang (School of Automation and Electronic Information, Xiangtan University) ;
  • Bumin Meng (School of Automation and Electronic Information, Xiangtan University) ;
  • Zhi Zhang (College of Electronic Engineering, Dongguan University of Technology) ;
  • Jinqing Linghu (School of Mechanical and Electrical Engineering, Guizhou Normal University) ;
  • Huabing Rao (ROYPOW Technology Co., Ltd)
  • Received : 2023.04.24
  • Accepted : 2023.12.07
  • Published : 2024.05.20

Abstract

Currently, many inverters employ inductors to boost the AC voltage. However, this leads to increased current distortion and limits the voltage boosting capability of the inverter. To address the above issue, a triple two-level inverter is proposed in this paper. The proposed inverter adopts a switched-capacitor boost circuit to boost the AC output voltage and to generate a multi-level voltage. Simultaneously, a three-phase full-bridge circuit is assigned to convert the DC voltage into AC voltage. In addition, a novel space vector modulation strategy is introduced to achieve capacitor voltage self-balance. Finally, simulation and experimental platforms have been established to verify the effectiveness of proposed inverter. The obtained results show that the proposed inverter meets the requirements for the expected inverter.

Keywords

Acknowledgement

This work was supported in part by Natural Science Foundation of China under Grant 62003288, and in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2022A1515140009 , in part by Science and Technology Research Project of Guizhou Province under Grant Qiankehe Basic-Z.K[2022]General 177, in part by the Science and Technology Innovation Program of Hunan Province under Grant 2022GK2050, in part by the Excellent Youth Program of Education Department under Project 21B0124, in part by the Key R&D projects in Hunan Province under Project 2023GK2030 and in part by China Postdoctoral Science Foundation 2022M712673.

References

  1. Akhtar, M.J., Behera, R.K.: Space vector modulation for distributed inverter-fed induction motor drive for electric vehicle application. IEEE. J. Emerg. Sel. Topics. Power. Electron. 9, 379-389 (2021) https://doi.org/10.1109/JESTPE.2020.2968942
  2. Hu, B., Kang, L., Liu, J., et al.: Model predictive direct power control with fixed switching frequency and computational amount reduction. IEEE. J. Emerg. Sel. Topics. Power. Electron. 7, 956-966 (2019) https://doi.org/10.1109/JESTPE.2019.2894007
  3. Gu, M., Wang, Z., Yu, K., et al.: Interleaved model predictive control for three-level-neutral-point-clamped dual three-phase PMSM drives with low switching frequencies. IEEE. Trans. Power. Electron. 36, 11618-11630 (2021) https://doi.org/10.1109/TPEL.2021.3068562
  4. Huynh, A.T., Ho, A.V., Chun, T.W.: Three-phase embedded modified-z-source three-level t-type inverters. IEEE. Access. 8, 130740-130750 (2020) https://doi.org/10.1109/ACCESS.2020.3009720
  5. Chaib, I., Berkouk, E.M., Gaubert, J.P., et al.: An improved discontinuous space vector modulation for Z-source inverter with reduced power losses. IEEE J. Emerg. Sel. Topics. Power. Electron. 9, 3479-3488 (2021) https://doi.org/10.1109/JESTPE.2020.3002684
  6. Manoj, P., Annamalai, K., Dhara, S., et al.: A quasi-z-source-based space-vector-modulated cascaded four-level inverter for photovoltaic applications. IEEE. J. Emerg. Sel. Topics. Power. Electron. 10, 4749-4762 (2022) https://doi.org/10.1109/JESTPE.2021.3125695
  7. Zhu, X., Zhang, B., Qiu, D.: A new non-isolated quasi-z-source inverter with high voltage gain. IEEE. J. Emerg. Sel. Topics. Power. Electron. 7, 2012-2028 (2019) https://doi.org/10.1109/JESTPE.2018.2873805
  8. Mo, W., Loh, P.C., Blaabjerg, F.: Asymmetrical Γ-source inverters. IEEE. Trans. Industr. Electron. 61, 637-647 (2014) https://doi.org/10.1109/TIE.2013.2253066
  9. Aleem, Z., Hanif, M.: Operational analysis of improved Γ-Z-source inverter with clamping diode and its comparative evaluation. IEEE. Trans. Power. Electron. 64, 9191-9200 (2017)
  10. Reddivari, R., Jena, D.: A negative embedded differential mode Γ -source inverter with reduced switching spikes. IEEE. Trans. Circuits. Syst. 67, 2009-2013 (2020) https://doi.org/10.1109/TCSII.2019.2941597
  11. Chen, M., Loh, P.C.: A single-phase high voltage-gain differential Y-Source inverter. IEEE. J. Emerg. Sel. Topics. Power. Electron. 9, 2027-2037 (2021) https://doi.org/10.1109/JESTPE.2020.3008758
  12. Nikbahar, A., Monfared, M.: Smooth DC-link Y-Source inverters: suppression of shoot-through current and avoiding DC magnetism. IEEE. Trans. Power. Electron. 37, 12357-12369 (2022) https://doi.org/10.1109/TPEL.2022.3178202
  13. Chen, M., Yin, C., Loh, P.C.: Magnetically coupled high-voltage-boost split Y-source inverter without leakage-induced voltage spikes. IEEE. Trans. Indus. Electron. 67, 5444-5455 (2020) https://doi.org/10.1109/TIE.2019.2931227
  14. Khoun-Jahan, H., Shotorbani, A.M., Abapour, M., et al.: Switched capacitor based cascaded half-bridge multilevel inverter with voltage boosting feature. CPSS. Trans. Power. Electron. Appl. 6, 63-73 (2021) https://doi.org/10.24295/CPSSTPEA.2021.00006
  15. Siddique, M.D., Karim, M.F., Mekhilef, S., et al.: Single-phase boost switched-capacitor-based multilevel inverter topology with reduced switching devices, IEEE. J. Emerg. Sel. Topics. Power. Electron. 10, 4336-4346 (2022) https://doi.org/10.1109/JESTPE.2021.3129063
  16. Varesi, K., Esmaeili, F., Deliri, S., et al.: Single-input quadruple-boosting switched-capacitor nine-level inverter with self-balanced capacitors. IEEE. Access. 10, 70350-70361 (2022) https://doi.org/10.1109/ACCESS.2022.3187005
  17. Wang, Y., Yuan, Y., Li, G., et al.: A t-type switched-capacitor multilevel inverter with low voltage stress and self-balancing. IEEE. Trans. Circuits. Syst. 68, 2257-2270 (2021) https://doi.org/10.1109/TCSI.2021.3060284
  18. Wu, M., Wang, K., Yang, K., et al.: Unified selective harmonic elimination control for four-level hybrid-clamped inverters. IEEE. Trans. Power. Electron. 35, 11488-11501 (2020) https://doi.org/10.1109/TPEL.2020.2985090
  19. Siddique, M.D., Mekhilef, S., Shah, N.M., et al.: A new switched capacitor 7L inverter with triple voltage gain and low voltage stress. IEEE. Trans. Circuits. Syst. 67, 1294-1298 (2020) https://doi.org/10.1109/TCSII.2019.2932480
  20. Janabi, A., Wang, B.: Switched-capacitor voltage boost convert for electric and hybrid electric vehicle drives. IEEE. Trans. Power. Electron. 35, 5615-5624 (2020) https://doi.org/10.1109/TPEL.2019.2949574
  21. Iqbal, A., Siddique, M.D., Reddy, B.P., et al.: A new family of step-up hybrid switched-capacitor integrated multilevel inverter topologies with dual input voltage sources. IEEE. Access. 9, 4398-4410 (2021) https://doi.org/10.1109/ACCESS.2020.3046192
  22. Zeng, J., Lin, W., Cen, D., et al.: Novel k-type multilevel inverter with reduced components and self-balance. IEEE. J. Emerg. Sel. Topics. Power. Electron. 8, 4343-4354 (2020) https://doi.org/10.1109/JESTPE.2019.2939562
  23. Dieckerhof, S., Bernet, S., Krug, D.: Power loss-oriented evaluation of high voltage IGBTs and multilevel converters in transformerless traction applications. IEEE. Trans. Power. Electron. 20, 1363-1368 (2005) https://doi.org/10.1109/TPWRD.2004.839187