References
- World Nuclear Association, Nuclear power in the world today. https://world-nuclear.org/information-library/currentand-future-generation/nuclear-power-in-the-world-today.aspx. (Accessed 6 December 2022).
- D. Sun, J. Xia, Research on road transport planning aiming at near zero carbon emissions: taking ruicheng county as an example, Energy 263 (2023), 125834.
- D.L. Clark, S.S. Hecker, G.D. Jarvinen, M.P. Neu, in: L.R. Morss, N.M. Edelstein, J. Fuger (Eds.), The Chemistry of the Actinide and Transactinide Elements, Springer, Netherlands, Dordrecht, 2008, pp. 813-1264.
- X. Liu, Y. Liu, Y. Wang, D. Yuan, J. Liu, J.W. Chew, Preparation of porous carbon materials by polyphosphazene as precursor for sorption of U(VI), Colloid Interface Sci. 41 (2021), 100387.
- Y. Wang, X. Dong, Y. Liu, Y. Liu, X. Cao, J. Chen, C. Xu, Electrochemical and spectrochemical analysis of U(VI) reduction in nitric acid solutions, J. Electroanal. Chem. 874 (2020), 114482.
- J. Zhang, Electrochemistry of actinides and fission products in molten salts-data review, J. Nucl. Mater. 447 (2014) 271-284. https://doi.org/10.1016/j.jnucmat.2013.12.017
- J.J. Laidler, The IFR pyroprocessing for high-level waste minimization, Trans. Am. Nucl. Soc. 68 (1993) 16-22.
- J. Serp, M. Allibert, A.L. Terrier, R. Malmbeck, M. Ougier, J. Rebizant, J.P. Glatz, Electroseparation of actinides from lanthanides on solid aluminum electrode in LiCl-KCl eutectic melts, J. Electrochem. Soc. 152 (2005) C167-C172. https://doi.org/10.1149/1.1859812
- J.J. Laidler, J.E. Battles, W.E. Miller, J.P. Ackerman, E. Carls, Development of pyroprocessing technology, Prog. Nucl. Energy 31 (1997) 131-140. https://doi.org/10.1016/0149-1970(96)00007-8
- M. Iizuka, T. Koyama, N. Kondo, R. Fujita, H. Tanaka, Actinides recovery from molten salt/liquid metal system by electrochemical methods, J. Nucl. Mater. 247 (2007) 183-190. https://doi.org/10.1016/S0022-3115(97)00096-2
- H. Kim, C. Kwon, S. Ham, J. Lee, S.J. Kim, S. Kim, Physical properties of KCl-UCl3 molten salts as potential fuels for molten salt reactors, J. Nucl. Mater. 577 (2023), 154329.
- S.A. Kuznetsov, H. Hayashi, K. Minato, M. Gaune-Escard, Electrochemical behavior and some thermodynamic properties of UCl4 and UCl3 dissolved in a LiCl-KCl eutectic melt, J. Electrochem. Soc. 152 (2005) C203-C212. https://doi.org/10.1149/1.1864532
- B.P. Reddy, S. Vandarkuzhali, T. Subramanian, P. Venkatesh, Electrochemical studies on the redox mechanism of uranium chloride in molten LiCl-KCl eutectic, Electrochim. Acta 49 (2004) 2471-2478. https://doi.org/10.1016/j.electacta.2004.02.002
- M.H. Xu, V. Smolenski, Q. Liu, A. Novoselova, K.W. Jiang, J. Yu, J.Y. Liu, R. R. Chen, H.S. Zhang, M.L. Zhang, J. Wang, Thermodynamics, solubility and the separation of uranium from cerium in molten In/3LiCl-2KCl system, J. Electrochem. Soc. 167 (2020), 136506.
- K. Serrano, P. Taxil, Electrochemical reduction of trivalent uranium ions in molten chlorides, J. Appl. Electrochem. 29 (1999) 497-503. https://doi.org/10.1023/A:1003402029895
- D. Rappleye, K. Teaford, M.F. Simpson, Investigation of the effects of uranium (III)-chloride concentration on voltammetry in molten LiCl-KCl eutectic with a glass sealed tungsten electrode, Electrochim. Acta 219 (2016) 721-733. https://doi.org/10.1016/j.electacta.2016.10.075
- F. Gao, C. Wang, L. Liu, J. Guo, S. Chang, L. Chan, Y. Ouyang, Electrode processes of uranium ions and electrodeposition of uranium in molten LiCl-KCl, J. Radioanal. Nucl. Chem. 280 (2009) 207-218. https://doi.org/10.1007/s10967-008-7417-y
- T. Koyama, M. Iizuka, N. Kondo, R. Fujita, H. Tanaka, Electrodeposition of uranium in stirred liquid cadmium cathode, J. Nucl. Mater. 247 (1997) 227-231. https://doi.org/10.1016/S0022-3115(97)00100-1
- T. Koyama, M. Iizuka, Y. Shoji, R. Fujita, H. Tanaka, T. Kobayashi, M. Tokiwai, An experimental study of molten salt electrorefining of uranium using solid iron cathode and liquid cadmium cathode for development of pyrometallurgical reprocessing, J. Nucl. Sci. Technol. 34 (1997) 384-393. https://doi.org/10.1080/18811248.1997.9733678
- M. Iizuka, T. Koyama, N. Kondo, R. Fujita, H. Tanaka, Actinides recovery from molten salt/liquid metal system by electrochemical methods, J. Nucl. Mater. 247 (2007) 183-190. https://doi.org/10.1016/S0022-3115(97)00096-2
- T. Yin, K. Liu, Y.L. Liu, Y.D. Yan, G.L. Wang, Z.F. Chai, W.Q. Shi, Electrochemical and thermodynamic properties of uranium on the liquid bismuth electrode in LiCl-KCl eutectic, J. Electrochem. Soc. 165 (2018) D722-D731. https://doi.org/10.1149/2.0571814jes
- K. Liu, H.B. Tang, J.W. Pang, Y.L. Liu, Y.X. Feng, Z.F. Chai, W.Q. Shia, Electrochemical properties of uranium on the liquid gallium electrode in LiCl-KCl eutectic, J. Electrochem. Soc. 163 (2016) D554-D561. https://doi.org/10.1149/2.1191609jes
- H. Moriyama, H. Yamana, S. Nishikawa, Y. Miyashita, K. Moritani, T. Mitsugashira, Equilibrium distributions of actinides and lanthanides in molten chloride salt and liquid zinc binary phase system, J. Nucl. Mater. 247 (1997) 197-202. https://doi.org/10.1016/S0022-3115(98)00097-X
- M. Kurata, Y. Sakamura, T. Matsui, Thermodynamic quantities of actinides and rare earth elements in liquid bismuth and cadmium, J. Alloys Compd. 234 (1996) 83-92. https://doi.org/10.1016/0925-8388(95)01960-X
- J. Zhang, E.A. Lahti, W. Zhou, Thermodynamic properties of actinides and rare earth fission products in liquid cadmium, J. Radioanal. Nucl. Chem. 303 (2015) 1637-1648.
- Y. Sakamura, T. Hijikata, K. Kinoshita, T. Inoue, T.S. Storvick, C.L. Krueger, J. J. Roy, D.L. Grimmett, S.P. Fusselman, R.L. Gay, Measurement of standard potentials of actinides (U, Np, Pu, Am) in LiCl-KCl eutectic salt and separation of actinides from rare earths by electrorefining, J. Alloys Compd. 273 (1998) 592-596. https://doi.org/10.1016/S0925-8388(98)00166-2
- V. Smolenski, A. Novoselova, A. Osipenko, M. Kormilitsyn, Ya. Luk'yanova, Thermodynamics of separation of uranium from neodymium between the gallium-indium liquid alloy and the LiCl-KCl molten salt phases, Electrochim. Acta 133 (2014) 354-358. https://doi.org/10.1016/j.electacta.2014.04.042
- V. Smolenski, A. Novoselova, A. Osipenko, A. Maershin, Thermodynamics and separation factor of uranium from lanthanum in liquid eutectic gallium-indium alloy/molten salt system, Electrochim. Acta 45 (2014) 81-85. https://doi.org/10.1016/j.electacta.2014.08.081
- V. Smolenski, A. Novoselova, V. Volkovich, Ya. Luk'yanova, A. Osipenko, A. Bychkov, T.R. Griffiths, The effect of Al concentration on thermodynamic properties of Nd and U in Ga-Al-based alloys and the separation factor of Nd/U couple in a "molten salt-liquid metal system", J. Radioanal. Nucl. Chem. 311 (2017) 687-693. https://doi.org/10.1007/s10967-016-5053-5
- V. Smolenski, A. Novoselova, P. Mushnikov, A. Osipenko, Study of the electrochemical behavior of U(III) ions on liquid Cd electrode and preparation of the U-Cd intermetallic compound in fused 3LiCl-2KCl eutectic, J. Radioanal. Nucl. Chem. 311 (2017) 127-133. https://doi.org/10.1007/s10967-016-4932-0
- A. Novoselova, V. Smolenski, The influence of the temperature and Ga-In alloy composition on the separation of uranium from neodymium in molten Ga-In/3LiCl-2KCl system during the recycling of high-level waste, J. Nucl. Mater. 509 (2018) 313-317. https://doi.org/10.1016/j.jnucmat.2018.06.040
- V.A. Lebedev, Selectivity of Liquid Metal Electrodes in Molten Halide, Metallurgiya, Chelyabinsk, 1993.
- M.V. Smirnov, Electrode Potentials in Molten Chlorides, Nauka, Moscow, 1973.
- A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamentals and Applications, John Wiley & Sons, New York, 1980.
- Z. Galus, Theoretical Basis of Electrochemical Analysis, Mir, Moscow, 1974.
- ASM Binary Phase Diagrams, Software ASM International, Copyright USA, 1996, 0-87170-562-1.