DOI QR코드

DOI QR Code

Determination of optimal dietary valine concentrations for improved growth performance and innate immunity of juvenile Pacific white shrimp Penaeus vannamei

  • Daehyun Ko (Department of Marine Life Sciences, Jeju National University) ;
  • Chorong Lee (Marine Science Institute, Jeju National University) ;
  • Kyeong-Jun Lee (Department of Marine Life Sciences, Jeju National University)
  • Received : 2023.11.09
  • Accepted : 2023.12.20
  • Published : 2024.03.31

Abstract

A study was conducted to evaluate dietary valine (Val) requirement for Pacific white shrimp (Penaeus vannamei). Five isonitrogenous (353 g/kg) and isocaloric (4.08 kcal/g) semi-purified diets containing graded levels of Val (2.7, 5.1, 8.7, 12.1 or 16.0 g/kg) were formulated. Quadruplicate groups of 12 shrimp (average body weight: 0.46 ± 0.00 g) were fed one of the experimental diets (2%-5% of total body weight) for 8 weeks. Maximum weight gain was observed in 8.7 g/kg Val group. However, the growth performance was reduced when Val concentration in diets were higher than 12.1 g/kg. Feed conversion ratio was significantly increased with 2.7 and 16.0 g/kg Val inclusion. Shrimp fed the diets containing 2.7 g/kg Val showed significantly lower protein efficiency ratio, whole-body crude protein and Val concentrations. Dietary inclusion of Val significantly improved the relative expression of insulin-like growth factor binding protein and immune-related genes (prophenoloxidase, lysozyme and crustin) in the hepatopancreas and 8.7 g/kg Val group showed highest expression among all the groups. The dietary requirement of Val for maximum growth of juvenile P. vannamei, estimated using polynomial regression analysis on growth, was 9.54 g/kg of Val (27.2 g/kg based on protein level) and maximum growth occurred at 9.27 g/kg of Val (26.2 g/kg based on protein level) based on broken-line regression analysis.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2021R1A2C2008384) and Basic Science Research Program through the NRF funded by the Ministry of Education (2019R1A6A1A03033553).

References

  1. Abidi SF, Khan MA. Dietary valine requirement of Indian major carp, Labeo rohita (Hamilton) fry. J Appl Ichthyol. 2004;20:118-22. https://doi.org/10.1046/j.1439-0426.2003.00526.x
  2. Ahmad I, Ahmed I, Dar NA. Dietary valine improved growth, immunity, enzymatic activities and expression of TOR signaling cascade genes in rainbow trout, Oncorhynchus mykiss fingerlings. Sci Rep. 2021;11:22089.
  3. Ahmed I, Khan MA. Dietary branched-chain amino acid valine, isoleucine and leucine requirements of fingerling Indian major carp, Cirrhinus mrigala (Hamilton). Br J Nutr. 2006;96:450-60. https://doi.org/10.1079/BJN20061845
  4. Amparyup P, Charoensapsri W, Tassanakajon A. Prophenoloxidase system and its role in shrimp immune responses against major pathogens. Fish Shellfish Immunol. 2013;34:990-1001. https://doi.org/10.1016/j.fsi.2012.08.019
  5. Association of Official Analytical Collaboration [AOAC]. Official methods of analysis of AOAC International. 18th ed. Gaithersburg, MD: AOAC International; 2005.
  6. Bae JY, Park G, Yun H, Hung SSO, Bai SC. The dietary valine requirement for rainbow trout, Oncorhynchus mykiss, can be estimated by plasma free valine and ammonia concentrations after dorsal aorta cannulation. J Appl Anim Res. 2012;40:73-9. https://doi.org/10.1080/09712119.2011.628395
  7. Chance RE, Mertz ET, Halver JE. Nutrition of salmonoid fishes: XII. Isoleucine, leucine, valine and phenylalanine requirements of chinook salmon and interrelations between isoleucine and leucine for growth. J Nutr. 1964;83:177-85. https://doi.org/10.1093/jn/83.3.177
  8. Chen X, Liu S, Peng B, Li D, Cheng Z, Zhu J, et al. Exogenous L-valine promotes phagocytosis to kill multidrug-resistant bacterial pathogens. Front Immunol. 2017;8:207.
  9. Choo PS, Smith TK, Cho CY, Ferguson HW. Dietary excesses of leucine influence growth and body composition of rainbow trout. J Nutr. 1991;121:1932-9. https://doi.org/10.1093/jn/121.12.1932
  10. Coloso RM, Cruz LJ. Preliminary studies in some aspects of amino acid biosynthesis in juveniles of Penaeus monodon Fabricius: I. incorporation of 14C from (U-14C) acetate into amino acids to precipitable proteins. Bull Philipp Biochem Soc. 1980;3:12-22.
  11. de Lorgeril J, Gueguen Y, Goarant C, Goyard E, Mugnier C, Fievet J, et al. A relationship between antimicrobial peptide gene expression and capacity of a selected shrimp line to survive a Vibrio infection. Mol Immunol. 2008;45:3438-45. https://doi.org/10.1016/j.molimm.2008.04.002
  12. Donato J Jr, Pedrosa RG, Cruzat VF, de Oliveira Pires IS, Tirapegui J. Effects of leucine supplementation on the body composition and protein status of rats submitted to food restriction. Nutrition. 2006;22:520-7. https://doi.org/10.1016/j.nut.2005.12.008
  13. Han Y, Han R, Koshio S, Ishikawa M, Yokoyama S, Gao J. Interactive effects of dietary valine and leucine on two sizes of Japanese flounder Paralichthys olivaceus. Aquaculture. 2014;432:130-8. https://doi.org/10.1016/j.aquaculture.2014.05.004
  14. Hasanthi M, Lee KJ. Dietary niacin requirement of Pacific white shrimp (Litopenaeus vannamei). Aquaculture. 2023;566:739169.
  15. Holly J, Perks C. The role of insulin-like growth factor binding proteins. Neuroendocrinology. 2006;83:154-60. https://doi.org/10.1159/000095523
  16. Huang Z, Tan X, Zhou C, Yang Y, Qi C, Zhao S, et al. Effect of dietary valine levels on the growth performance, feed utilization and immune function of juvenile golden pompano, Trachinotus ovatus. Aquac Nutr. 2017;24:74-82.
  17. Hughes SG, Rumsey GL, Nesheim MC. Dietary requirements for essential branched-chain amino acids by lake trout. Trans Am Fish Soc. 1983;112:812-7. https://doi.org/10.1577/1548-8659(1983)112<812:DRFEBA>2.0.CO;2
  18. Jin Y, Liu FJ, Liu YJ, Tian LX, Zhang ZH. Dietary tryptophan requirements of juvenile pacific white shrimp, Litopenaeus vannamei (Boone) reared in low-salinity water. Aquac Int. 2017;25:955-68. https://doi.org/10.1007/s10499-016-0098-6
  19. Lee C, Lee KJ. Dietary protein requirement of Pacific white shrimp Litopenaeus vannamei in three different growth stages. Fish Aquat Sci. 2018;21:1-6. https://doi.org/10.1186/s41240-017-0078-4
  20. Liu FJ, Liu YJ, Tian LX, Li XF, Zhang ZH, Yang HJ, et al. Quantitative dietary isoleucine requirement of juvenile Pacific white shrimp, Litopenaeus vannamei (Boone) reared in low-salinity water. Aquac Int. 2014;22:1481-97. https://doi.org/10.1007/s10499-014-9761-y
  21. Luo JB, Feng L, Jiang WD, Liu Y, Wu P, Jiang J, et al. The impaired intestinal mucosal immune system by valine deficiency for young grass carp (Ctenopharyngodon idella) is associated with decreasing immune status and regulating tight junction proteins transcript abundance in the intestine. Fish Shellfish Immunol. 2014;40:197-207. https://doi.org/10.1016/j.fsi.2014.07.003
  22. Matsumoto T, Nakamura K, Matsumoto H, Sakai R, Kuwahara T, Kadota Y, et al. Bolus ingestion of individual branchedchain amino acids alters plasma amino acid profiles in young healthy men. SpringerPlus. 2014;3:35.
  23. Millamena OM, Bautista-Teruel MN, Kanazawa A. Valine requirement of postlarval tiger shrimp, Penaeus monodon Fabricius. Aquac Nutr. 1996;2:129-32. https://doi.org/10.1111/j.1365-2095.1996.tb00051.x
  24. National Research Council [NRC]. Nutrient requirements of fish and shrimp. Washington, DC: National Academies Press; 2011.
  25. Olsen RL, Hasan MR. A limited supply of fishmeal: impact on future increases in global aquaculture production. Trends Food Sci Technol. 2012;27:120-8.
  26. Petro TM, Bhattacharjee JK. Effect of dietary essential amino acid limitations upon the susceptibility to Salmonella typhimurium and the effect upon humoral and cellular immune responses in mice. Infect Immun. 1981;32:251-9. https://doi.org/10.1128/iai.32.1.251-259.1981
  27. Rahimnejad S, Lee KJ. Dietary valine requirement of juvenile red sea bream Pagrus major. Aquaculture. 2013;416:212-8. https://doi.org/10.1016/j.aquaculture.2013.09.026
  28. Ren MC, Habte-Tsion HM, Liu B, Zhou QL, Xie J, Ge XP, et al. Dietary valine requirement of juvenile blunt snout bream (Megalobrama amblycephala Yih, 1955). J Appl Ichthyol. 2015;31:1086-92. https://doi.org/10.1111/jai.12911
  29. Rodehutscord M, Becker A, Pack M, Pfeffer E. Response of rainbow trout (Oncorhynchus mykiss) to supplements of individual essential amino acids in a semipurified diet, including an estimate of the maintenance requirement for essential amino acids. J Nutr. 1997;127:1166-75. https://doi.org/10.1093/jn/127.6.1166
  30. Tassanakajon A, Amparyup P, Somboonwiwat K, Supungul P. Cationic antimicrobial peptides in penaeid shrimp. Mar Biotechnol. 2011;13:639-57.
  31. Wilson RP, Poe WE, Robinson EH. Leucine, isoleucine, valine and histidine requirements of fingerling channel catfish. J Nutr. 1980;110:627-33.
  32. Xiao W, Li DY, Zhu JL, Zou ZY, Yue YR, Yang H. Dietary valine requirement of juvenile Nile tilapia, Oreochromis niloticus. Aquac Nutr. 2017;24:315-23.
  33. Xie F, Zeng W, Zhou Q, Wang H, Wang T, Zheng C, et al. Dietary lysine requirement of juvenile Pacific white shrimp, Litopenaeus vannamei. Aquaculture. 2012;358-359:116-21. https://doi.org/10.1016/j.aquaculture.2012.06.027
  34. Zhang S, Zeng X, Ren M, Mao X, Qiao S. Novel metabolic and physiological functions of branched chain amino acids: a review. J Anim Sci Biotechnol. 2017;8:10.
  35. Zhao F, Xu P, Xu G, Huang D, Zhang L, Ren M, et al. Dietary valine affects growth performance, intestinal immune and antioxidant capacity in juvenile largemouth bass (Micropterus salmoides). Anim Feed Sci Technol. 2023;295:115541.
  36. Zhou QC, Wang YL, Wang HL, Tan BP. Dietary threonine requirements of juvenile Pacific white shrimp, Litopenaeus vannamei. Aquaculture. 2013;392-395:142-7. https://doi.org/10.1016/j.aquaculture.2013.01.026
  37. Zhou QC, Zeng WP, Wang HL, Wang T, Wang YL, Xie FJ. Dietary arginine requirement of juvenile Pacific white shrimp, Litopenaeus vannamei. Aquaculture. 2012;364-365:252-8. https://doi.org/10.1016/j.aquaculture.2012.08.020
  38. Zhou Y, Zhou Z, Peng J, Loor JJ. Methionine and valine activate the mammalian target of rapamycin complex 1 pathway through heterodimeric amino acid taste receptor (TAS1R1/TAS1R3) and intracellular Ca2+ in bovine mammary epithelial cells. J Dairy Sci. 2018;101:11354-63. https://doi.org/10.3168/jds.2018-14461
  39. Zhou Z, Wu X, Gatlin DM, Wang X, Mu W, Ye B, et al. Dietary valine levels affect growth, protein utilisation, immunity and antioxidant status in juvenile hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Br J Nutr. 2021;125:408-19. https://doi.org/10.1017/S0007114520002858
  40. Zou Z, Tao T, Li H, Zhu X. mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges. Cell Biosci. 2020;10:31.