DOI QR코드

DOI QR Code

The protective effect of zinc oxide and selenium oxide nanoparticles on the functional parameters of rat sperm during vitrification

  • Nafiseh Tavakolpoor Saleh (Depaetment of Biophysics and Biochemistry, Faculty of Advanced Science and Technology, Islamic Azad University Tehran Medical Sciences) ;
  • Zohreh Hosseinzadeh (Department of Nursing and Midwifery, Ilam University of Medical Sciences) ;
  • Narges Gholami Banadkuki (Andrology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences) ;
  • Maryam Salehi Novin (Department of Anatomy, Iran University of Medical Sciences) ;
  • Sanaz Saljooghi Zaman (Department of Embryology, Royan Institute for Reproductive Biomedicine, Royan Institute) ;
  • Tohid Moradi Gardeshi (Department of Veterinary Sciences, Garmsar Branch, Islamic Azad University)
  • Received : 2023.04.18
  • Accepted : 2023.08.28
  • Published : 2024.03.31

Abstract

Objective: While sperm freezing (cryopreservation) is an effective method for preserving fertility, it can potentially harm the structure and function of sperm due to an increase in the production of reactive oxygen species. This study aimed to assess the impact of zinc oxide nanoparticles (ZnONPs) and selenium oxide nanoparticles (SeONPs) on various sperm functional parameters, including motility, plasma membrane integrity (PMI), mitochondrial membrane potential (MMP), acrosome membrane integrity (ACi), and malondialdehyde (MDA) levels. Methods: Semen samples were collected from 20 Albino Wistar rats. These samples were then divided into six groups: fresh, cryopreservation control, and groups supplemented with SeONPs (1, 2, 5 ㎍/mL) and ZnONPs (0.1, 1, 10 ㎍/mL). Results: Statistical analysis revealed that all concentrations of SeONPs increased total motility and progressive reduction of MDA levels compared to the cryopreservation control group (p<0.05). However, supplementation with ZnONPs did not affect these parameters (p>0.05). Conversely, supplements of 1 and 2 ㎍/mL SeONPs and 1 ㎍/mL ZnONPs contributed to the improvement of PMI and ACi (p<0.05). Yet, no significant change was observed in MMP with any concentration of SeONPs and ZnONPs compared to the cryopreservation control group (p>0.05). Conclusion: The findings suggest that optimal concentrations of SeONPs may enhance sperm parameters during the freezing process.

Keywords

References

  1. Suhag V, Sunita BS, Sarin A, Singh AK, Dashottar S. Fertility preservation in young patients with cancer. South Asian J Cancer 2015;4:134-9. https://doi.org/10.4103/2278-330X.173175
  2. Tomas RM, Bailey TL, Hasan M, Gibson MI. Extracellular antifreeze protein significantly enhances the cryopreservation of cell monolayers. Biomacromolecules 2019;20:3864-72. https://doi.org/10.1021/acs.biomac.9b00951
  3. Arav A, Natan Y, Kalo D, Komsky-Elbaz A, Roth Z, Levi-Setti PE, et al. A new, simple, automatic vitrification device: preliminary results with murine and bovine oocytes and embryos. J Assist Reprod Genet 2018;35:1161-8. https://doi.org/10.1007/s10815-018-1210-9
  4. Horta F, Alzobi H, Jitanantawittaya S, Catt S, Chen P, Pangestu M, et al. Minimal volume vitrification of epididymal spermatozoa results in successful in vitro fertilization and embryo development in mice. Asian J Androl 2017;19:107-12. https://doi.org/10.4103/1008-682X.183378
  5. Spis E, Bushkovskaia A, Isachenko E, Todorov P, Sanchez R, Skopets V, et al. Conventional freezing vs. cryoprotectant-free vitrification of epididymal (MESA) and testicular (TESE) spermatozoa: three live births. Cryobiology 2019;90:100-2. https://doi.org/10.1016/j.cryobiol.2019.08.003
  6. Zhang X, Lu X, Li J, Xia Q, Gao J, Wu B. Mito-Tempo alleviates cryodamage by regulating intracellular oxidative metabolism in spermatozoa from asthenozoospermic patients. Cryobiology 2019;91:18-22. https://doi.org/10.1016/j.cryobiol.2019.11.005
  7. Ghorbani M, Vatannejad A, Khodadadi I, Amiri I, Tavilani H. Protective effects of glutathione supplementation against oxidative stress during cryopreservation of human spermatozoa. Cryo Letters 2016;37:34-40.
  8. Giaretta E, Estrada E, Bucci D, Spinaci M, Rodriguez-Gil JE, Yeste M. Combining reduced glutathione and ascorbic acid has supplementary beneficial effects on boar sperm cryotolerance. Theriogenology 2015;83:399-407. https://doi.org/10.1016/j.theriogenology.2014.10.002
  9. Rezaeian Z, Yazdekhasti H, Nasri S, Rajabi Z, Fallahi P, Amidi F. Effect of selenium on human sperm parameters after freezing and thawing procedures. Asian Pac J Reprod 2016;5:462-6. https://doi.org/10.1016/j.apjr.2016.11.001
  10. Suri SS, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. J Occup Med Toxicol 2007;2:16.
  11. Afifi M, Almaghrabi OA, Kadasa NM. Ameliorative effect of zinc oxide nanoparticles on antioxidants and sperm characteristics in streptozotocin-induced diabetic rat testes. Biomed Res Int 2015;2015:153573.
  12. Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science 2006;311:622-7. https://doi.org/10.1126/science.1114397
  13. Zhandi M, Talebnia-Chalanbar A, Towhidi A, Sharafi M, Yousefi AR, Hussaini SM. The effect of zinc oxide on rooster semen cryopreservation. Br Poult Sci 2020;61:188-94. https://doi.org/10.1080/00071668.2019.1686125
  14. Narasimhaiah M, Arunachalam A, Sellappan S, Mayasula VK, Guvvala PR, Ghosh SK, et al. Organic zinc and copper supplementation on antioxidant protective mechanism and their correlation with sperm functional characteristics in goats. Reprod Domest Anim 2018;53:644-54. https://doi.org/10.1111/rda.13154
  15. Dawei AI, Zhisheng W, Anguo Z. Protective effects of Nano-ZnO on the primary culture mice intestinal epithelial cells in in vitro against oxidative injury. World J Agric Sci 2010;6:149-53.
  16. Shahin MA, Khalil WA, Saadeldin IM, Swelum AA, El-Harairy MA. Comparison between the effects of adding vitamins, trace elements, and nanoparticles to SHOTOR extender on the cryopreservation of dromedary camel epididymal spermatozoa. Animals (Basel) 2020;10:78.
  17. Jahanbin R, Yazdanshenas P, Rahimi M, Hajarizadeh A, Tvrda E, Nazari SA, et al. In vivo and in vitro evaluation of bull semen processed with zinc (Zn) nanoparticles. Biol Trace Elem Res 2021;199:126-35. https://doi.org/10.1007/s12011-020-02153-4
  18. Watanabe T, Endo A. Effects of selenium deficiency on sperm morphology and spermatocyte chromosomes in mice. Mutat Res 1991;262:93-9. https://doi.org/10.1016/0165-7992(91)90113-I
  19. Noack-Fuller G, De Beer C, Seibert H. Cadmium, lead, selenium, and zinc in semen of occupationally unexposed men. Andrologia 1993;25:7-12. https://doi.org/10.1111/j.1439-0272.1993.tb02674.x
  20. Zhang J, Wang H, Yan X, Zhang L. Comparison of short-term toxicity between Nano-Se and selenite in mice. Life Sci 2005;76:1099-109. https://doi.org/10.1016/j.lfs.2004.08.015
  21. Khalil WA, El-Harairy MA, Zeidan AE, Hassan MA. Impact of selenium nano-particles in semen extender on bull sperm quality after cryopreservation. Theriogenology 2019;126:121-7. https://doi.org/10.1016/j.theriogenology.2018.12.017
  22. Nateq S, Moghaddam G, Alijani S, Behnam M. The effects of different levels of Nano selenium on the quality of frozen-thawed sperm in ram. J Appl Anim Res 2020;48:434-9. https://doi.org/10.1080/09712119.2020.1816549
  23. Zhu C, Li L, Liu Q, Li J, Peng G, Zhang L, et al. Effect of selenium nanoparticles (SeNPs) supplementation on the sperm quality of fish after short-term storage. Aquaculture 2023;562:738876.
  24. Shahandeh E, Ghorbani M, Mokhlesabadifarahani T, Bardestani F. Melatonin and selenium supplementation in extenders improves the post-thaw quality parameters of rat sperm. Clin Exp Reprod Med 2022;49:87-92. https://doi.org/10.5653/cerm.2022.05267
  25. Nasiri Z, Ghorbani F, Seify M, Sharbati A. Effect of aqueous Nigella sativa extract on the functional parameters of post-thaw human spermatozoa during vitrification. Clin Exp Reprod Med 2022;49:110-6. https://doi.org/10.5653/cerm.2021.04861
  26. Koohestanidehaghi Y, Torkamanpari M, Shirmohamadi Z, Lorian K, Vatankhah M. The effect of cysteine and glutamine on human sperm functional parameters during vitrification. Andrologia 2021;53:e13870.
  27. Jahanbin R, Yazdanshenas P, Amin Afshar M, Mohammadi Sangcheshmeh A, Varnaseri H, Chamani M, et al. Effect of zinc nano-complex on bull semen quality after freeze-thawing process. Anim Prod 2015;17:371-80.
  28. Silva RA, Batista AM, Arruda LC, de Souza HM, Nery IH, Gomes WA, et al. Concentration of soybean lecithin affects short-term storage success of goat semen related with seminal plasma removal. Anim Reprod 2019;16:895-901. https://doi.org/10.21451/1984-3143-AR2019-0012
  29. Seifi-Jamadi A, Kohram H, Zareh-Shahne A, Dehghanizadeh P, Ahmad E. Effect of various concentrations of butylated hydroxyanisole and butylated hydroxyl-toluene on freezing capacity of Turkman stallion sperm. Anim Reprod Sci 2016;170:108-13. https://doi.org/10.1016/j.anireprosci.2016.04.010
  30. Ghorbani F, Nasiri Z, Koohestanidehaghi Y, Lorian K. The antioxidant roles of L-carnitine and N-acetyl cysteine against oxidative stress on human sperm functional parameters during vitrification. Clin Exp Reprod Med 2021;48:316-21. https://doi.org/10.5653/cerm.2021.04560
  31. Tortora-Perez JL. The importance of selenium and the effects of its deficiency in animal health. Small Rumin Res 2010;89:185-92. https://doi.org/10.1016/j.smallrumres.2009.12.042
  32. Caldamone AA, Freytag MK, Cockett AT. Seminal zinc and male infertility. Urology 1979;13:280-1. https://doi.org/10.1016/0090-4295(79)90421-7
  33. Dorostkar K, Alavi-Shoushtari SM, Mokarizadeh A. Effects of in vitro selenium addition to the semen extender on the spermatozoa characteristics before and after freezing in water buffaloes (Bubalus bubalis). Vet Res Forum 2012;3:263-8.
  34. Khoram Abadi F, Khodaei Motlagh M, Moradi MH. Effect of in vitro selenium nanoparticles addition to the semen extender on the spermatozoa parameters after freezing in Farahani ram. J Anim Res 2017;30:301-7.
  35. Farhadi F, Towhidi A, Shakeri M, Seifi-Jamadi A. Zinc oxide nanoparticles have beneficial effect on frozen-thawed spermatozoa of Holstein bulls. Iran J Appl Anim Sci 2022;12:49-55.
  36. Isaac AV, Kumari S, Nair R, Urs DR, Salian SR, Kalthur G, et al. Supplementing zinc oxide nanoparticles to cryopreservation medium minimizes the freeze-thaw-induced damage to spermatozoa. Biochem Biophys Res Commun 2017;494:656-62. https://doi.org/10.1016/j.bbrc.2017.10.112
  37. Mankad M, Sathawara NG, Doshi H, Saiyed HN, Kumar S. Seminal plasma zinc concentration and alpha-glucosidase activity with respect to semen quality. Biol Trace Elem Res 2006;110:97-106. https://doi.org/10.1385/BTER:110:2:97
  38. Safa S, Moghaddam G, Jozani RJ, Daghigh Kia H, Janmohammadi H. Effect of vitamin E and selenium nanoparticles on post-thaw variables and oxidative status of rooster semen. Anim Reprod Sci 2016;174:100-6. https://doi.org/10.1016/j.anireprosci.2016.09.011
  39. Arruda LC, Tobal LF, Carneiro GF, Guerra MM. Zinc oxide nanoparticles alter the membrane potential of mitochondria from post-thawed ram spermatozoa. Small Rumin Res 2021;202:106466.
  40. Fang L, Bai C, Chen Y, Dai J, Xiang Y, Ji X, et al. Inhibition of ROS production through mitochondria-targeted antioxidant and mitochondrial uncoupling increases post-thaw sperm viability in yellow catfish. Cryobiology 2014;69:386-93. https://doi.org/10.1016/j.cryobiol.2014.09.005
  41. Huang YL, Tseng WC, Cheng SY, Lin TH. Trace elements and lipid peroxidation in human seminal plasma. Biol Trace Elem Res 2000;76:207-15. https://doi.org/10.1385/BTER:76:3:207