
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 4, Apr. 2024                                   1020 
Copyright ⓒ 2024 KSII 

 
This work is sponsored by the National Natural Science Foundation of China No. 62172353, No. 62302114, No. 
U20B2046 and No. 61976064. Future Network Scientific Research Fund Project No. FNSRFP-2021-YB-48. 
Innovation Fund Program of the Engineering Research Center for Integration and Application of Digital Learning 
Technology of Ministry of Education No.1221045. 
 
http://doi.org/10.3837/tiis.2024.04.011                                                                                                                ISSN : 1976-7277 

Research on Covert Communication 
Technology Based on Matrix 

Decomposition of Digital Currency 
Transaction Amount 

 
Lejun Zhang1, 2, 3, 4*, Bo Zhang1, Ran Guo5*, Zhujun Wang1, Guopeng Wang3*, Jing Qiu2,  

Shen Su2, Yuan Liu2, Guangxia Xu2, Zhihong Tian2, and Sergey Gataullin6, 7 
1 College of Information Engineering, Yangzhou University, Yangzhou 225127, China 

2 The Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China 
3 Research and Development Center for E-Learning, Ministry of Education, Beijing, 100039, China 

4 School Math & Computer Science, Quanzhou Normal University, Quanzhou 362000, China 
5 School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China 

6 Central Economic and Mathematics Institute, Russian Academy of Sciences, Moscow, Russia 
7 MIREA - Russian Technological University, 78 Vernadsky Avenue, Moscow, Russian Federation119454 

[e-mail: zhanglejun@yzu.edu.cn, MZ120210953@yzu.edu.cn, guoran@gzhu.edu.cn, 
DX120210091@yzu.edu.cn, wangguopeng@sohu.com, qiujing@gzhu.edu.cn, sushen@gzhu.edu.cn, 
liuyuan@swc.neu.edu.cn, xugx@cqupt.edu.cn, tianzhihong@gzhu.edu.cn, sgataullin@cemi-ras.ru] 

*Corresponding author: Lejun Zhang, Ran Guo, Guopeng Wang 
 

Received September 17, 2023; revised January 5, 2024; accepted March 11, 2024;  
published April 30, 2024 

 
Abstract 

 
With the development of covert communication technologies, the number of covert 
communication technologies using blockchain as a carrier is increasing. However, using the 
transaction amount of digital currency as a carrier for covert communication has problems 
such as low embedding rate, large consumption of transaction amount, and easy detection. In 
this paper, firstly, by experimentally analyzing the distribution of bitcoin transaction amounts, 
we determine the most suitable range of amounts for matrix decomposition. Secondly, we 
design a novel matrix decomposition method that can successfully decompose a large amount 
matrix into two small amount matrices and utilize the elements in the small amount matrices 
for covert communication. Finally, we analyze the feasibility of the novel matrix 
decomposition method in this scheme in detail from four aspects, and verify it by experimental 
comparison, which proves that our scheme not only improves the embedding rate and reduces 
the consumption of transaction amount, but also has a certain degree of resistance to detection. 
 
 
Keywords: blockchain, covert communication, matrix decomposition, transaction amount, 
embedding rate, detection resistance 
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1. Introduction 

Covert communication [1] is a method of hiding information, a process in which the sender 
transmits a covert message over a public channel through a carrier and the receiver receives 
the message, making it difficult for a third party to notice or detect the existence of the 
communication. In traditional covert communication, images [2], videos [3], files [4] , etc. are 
often used as carriers. Although they have a high embedding rate, the content of the 
communication is susceptible to problems such as eavesdropping. Blockchain technology is 
characterized by decentralization and anonymity. The choice of blockchain as a carrier for 
covert communications helps to compensate for some of the deficiencies that exist in 
traditional covert communications, but it is also necessary to consider the security and privacy 
challenges specific to blockchain. 

Blockchain covert communication refers to the use of covert communication technology 
for secure and hidden messaging within the framework of blockchain technology. In this 
scenario, both communicators utilize a certain carrier of the blockchain to communicate while 
keeping their communication activities hidden from outside observers. Although this provides 
an additional layer of security for communication, however, the main challenge in blockchain 
covert communication is the balance between covertness and embedding rate. Concealment 
requires that communication activities are not readily detectable, while the embedding rate 
relates to the ability to embed information in the communication vector. In blockchain covert 
communication, potential vectors include transaction amounts [5], storage fields [6], 
transaction addresses [7], protocols [8], etc. in blockchain transactions. However, blockchain 
transaction amount as one of the carriers has some problems, such as low embedding rate, 
large transaction amount, and easy detection. The number of embedded messages increases as 
the transaction amount becomes larger, but a high transaction amount also increases the risk 
of being easily detected. 

Therefore, this paper designs a scheme to realize covert communication based on digital 
currency transaction amount matrix decomposition method. First, the information to be 
transmitted is encrypted to form a ciphertext, and then the ciphertext is sliced and transformed 
into a large amount matrix. Next, two small transaction amount matrices are obtained by 
decomposing the large amount matrix. Finally, we skillfully utilize the amounts in these two 
small matrices as transmission carriers to transmit the information. This scheme not only 
improves the embedding rate and reduces the consumption of transaction amounts, but also 
has certain resistance to detection. 

Our contribution can be summarized as follows. 
• In this paper, we design a novel matrix decomposition method, which actually represents 

the large amount matrix by two small amount matrices. The method reduces the amount 
consumption and improves the embedding rate. And the method makes the distribution of the 
length of the amount in the decomposition matrix on the range 𝑑𝑑 in this method, which makes 
the scheme resistant to detection. 

• The set of transaction sender addresses and the set of transaction receiver addresses are 
generated by sharing 𝐾𝐾𝐾𝐾𝐾𝐾 off-chain. And the positions of the elements in the small amount 
matrix are represented by the interaction between the addresses. 

• Finally, this paper demonstrates the feasibility of the novel matrix decomposition method 
and analyzes the resistance to detection and embedding rate of this scheme by experiments. 

The rest of the paper is organized as follows. In Section 2, the research work related to 
blockchain covert communication, common matrix decomposition methods and the matrix 
decomposition method designed in this paper are introduced. Section 3 details the scheme 
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design for implementing covert communication based on the matrix decomposition method of 
digital currency transaction amounts. In Section 4, we first compare and analyze the matrix 
decomposition method from four aspects, then we analyze the resistance to detection and 
embedding rate of this scheme, and finally we compare and analyze the performance with 
other schemes. The last section concludes the whole paper. 

2. Related Work 
In recent years, with the development of metaverse [9], research on blockchain carriers [10][11] 
for covert communication as its underlying technology is increasing. 

Partala J.[12] first proposed the blockchain covert communication scheme (BLOCCE), 
which transmits messages embedded in the least significant bit (LSB) of an address. Zhang L 
et al.[13] proposes the method of covert communication (V_BLOCCE), which is a scheme 
that realizes covert communication by embedding covert information into addresses through 
the Vanitygen generate special address tool. Zhang L et al.[14] proposed a scheme to utilize 
fields in the whisper [15] protocol for covert message transfer in an Ethereum environment. 
Tian J et al.[16] proposed a blockchain covert communication scheme based on dynamic labels 
(DLchain), which is to store the dynamic labels in the OP_RETURN field, and the covert 
messages are embedded in the signatures of multiple transactions respectively for covert 
transmission. Gao F et al.[17] proposed a scheme which is based on Kleptography [18] 
algorithm to embed the covert information into signatures for covert information transmission. 

There are problems such as changing the structure of the transaction in the above schemes. 
In the current scheme, the transaction structure is easily changed, so the researchers propose a 
covert communication scheme with the transaction amount of the digital currency. Liu S et al. 
[19] proposed three embedding approaches for building blockchain covert communication in 
Ethereum using the Value field of a transaction [20], which are One-Bit Embedding scheme 
(OBE), HMAC-based Multi-Bit Embedding scheme (HMAC-based MBE), and Hash-based 
Multi-Bit Embedding scheme (Hash-based MBE). Luo X et al.[21] propose a novel covert 
communication scheme based on Bitcoin transactions (NCCM), which involves embedding 
messages onto the interactions between Bitcoin transaction amounts and addresses for covert 
transmission. Akbari I et al.[22] proposed a combination of transaction and image 
steganography (TISCC), where off-chain steganography is done via images and on-chain 
smart contracts are invoked to transmit the steganographic information in the transaction field 
in Ethereum. However, the problems of large transaction amounts, low embedding rates and 
easy detection in schemes that use the transaction amounts of digital currencies as carriers for 
covert communication have not been properly addressed. 

Matrix decomposition [23] is to split a matrix into the product of multiple matrices. 
Therefore, it is able to decompose a large-amount matrix into two small-amount matrices, 
effectively solving the problems of too large transaction amounts and low embedding rates. 
The methods of matrix decomposition include Triangular Decomposition [24], Full Rank 
Decomposition [25], QR Decomposition [26], and SVD (Singular Value) Decomposition [27]. 
However, the matrices obtained from these decompositions are usually uncontrollable and may 
have non-positive integers, random lengths, etc., which do not meet the requirements of this 
paper's scheme for setting the transaction amount. Therefore, in this paper, a novel matrix 
decomposition method is designed, which is able to decompose a large amount (integer) matrix 
into the product of two small amount (integer) matrices, i.e., 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎 ×
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏, as shown in (1) and (2). In this equation, the diagonal of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁, and the 
elements in the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏 matrices represent the transaction amount. The matrix 
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decomposition method designed in this scheme can effectively control the length of the 
elements in the decomposed small amount matrix, thus solving the problem of easy detection.  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎 × 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏                   (1) 
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3. Scheme Design for Covert Communication Based on Matrix 
Decomposition Method of Digital Currency Transaction Amount 

In this scheme, the sender Alice sends a message 𝑀𝑀 to the receiver Bob, and Bob receives the 
message 𝑀𝑀. It needs to go through three stages, which are message encryption, message 
transmission, and message restoration. As shown in Fig. 1. 

Message encryption stage: Firstly, the message 𝑀𝑀 is encrypted and padded to generate 𝑀𝑀𝐶𝐶. 
Secondly, 𝑀𝑀𝐶𝐶 is binary encoded to obtain 𝑀𝑀𝐵𝐵. Thirdly, 𝑀𝑀𝐵𝐵 is cut, and the individual parts of 
the cut are converted to decimal numbers. Finally, the decimal numbers of each part are formed 
into a matrix 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 , which is decomposed into two transaction amount matrices 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏. 

Message transmission stage: Firstly, the set of transaction addresses generated by the pre-
shared 𝐾𝐾𝐾𝐾𝐾𝐾 chain off the chain. Secondly, each column of matrix 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎 consists of one 
transaction and each row of matrix 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏  consists of one transaction. The transaction 
utilizes the interaction of the addresses. Finally, these transactions are published to the Bitcoin 
transaction network. 

Message reduction stage: Firstly, generate the transaction address set according to the pre-
shared 𝐾𝐾𝐾𝐾𝐾𝐾 off the chain, and extract the transactions. Secondly, the transaction amounts of 
these transactions are arranged separately to get two matrices 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏, which 
are multiplied to get 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. Thirdly, the elements Number on the diagonal of matrix 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  are extracted and converted to binary code in turn to form 𝑀𝑀𝐵𝐵 , which is 
decoded to get ciphertext 𝑀𝑀𝐶𝐶. Finally, the message 𝑀𝑀 is obtained by decrypting the ciphertext 
𝑀𝑀𝐶𝐶. 

 
Fig. 1. Framework of the scheme based on the matrix decomposition method of digital currency 
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3.1 Message encryption stage 
The message encryption stage includes the padding of the ciphertext, the cutting of the 
ciphertext, and the matrix decomposition. 

3.1.1 Ciphertext padding and cutting 
Ciphertext padding and cutting includes scheme design and algorithm design.  

The design of ciphertext padding and cutting consists of padding the ciphertext 𝑀𝑀𝐶𝐶 and 
cutting of ciphertext 𝑀𝑀𝐵𝐵. The purpose is to determine the size 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 to be padded for 𝑀𝑀𝐶𝐶 and 
the slice size 𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 for 𝑀𝑀𝐵𝐵. 

The ciphertext 𝑀𝑀𝐶𝐶 is padded to make it easier to cut 𝑀𝑀𝐵𝐵,that is, the ciphertext 𝑀𝑀𝐶𝐶 is padded 
to a certain length and encoded as 𝑀𝑀𝐵𝐵 to make it easier to cut. Due to the cut of 𝑀𝑀𝐵𝐵, the last 
cut part will have less than the 𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 bit binary length, it is difficult to decompose and 
needs to be padded to get 𝑀𝑀𝐶𝐶. The padding length is calculated as 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 according to (3).  

𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 = (𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/8 )  − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶%(𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/8)        (3) 
The cut of the ciphertext 𝑀𝑀𝐵𝐵 is the size of the slice to be obtained (𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐). Firstly, the 

range [𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚] is determined by the transaction amount length range 𝑑𝑑, according to (4) 
and (5). Secondly, 𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑚𝑚𝑚𝑚𝑚𝑚 are converted to binary numbers respectively, and their bit 
numbers 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 are calculated according to (6) and (7). Thirdly, the number of bits 
in the slice must be a multiple of 8, since the conversion of a cipher character to binary requires 
8 bits of binary to be represented. In order to make the embedding rate as large as possible 
within the specified range, the number of bits in the slice must be as large as possible, so  
𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 takes the maximum value, as shown in (8). Finally, in order to distribute the length 
of the transaction amount of the matrix decomposition in the most appropriate range, the range 
of values [𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚]  of the elements in the matrix 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  is 
determined according to (9) and (10). 

𝑚𝑚𝑚𝑚𝑚𝑚 = 999 … 999�������
𝑑𝑑

× 999 … 999�������
𝑑𝑑

+ 999 … 999�������
𝑑𝑑

× 999 … 999�������
𝑑𝑑

                 (4) 

𝑚𝑚𝑚𝑚𝑚𝑚 = 100 … 000�������
𝑑𝑑

× 100 … 000�������
𝑑𝑑

+ 100 … 000�������
𝑑𝑑

× 100 … 000�������
𝑑𝑑

                 (5) 

𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑚𝑚𝑚𝑚𝑚𝑚)                                               (6) 
𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑚𝑚𝑚𝑚𝑚𝑚)                                                (7) 

𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑀𝑀𝑀𝑀𝑀𝑀({𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 < 𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 < 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚} 
∩ {𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐%8 = 0})                                      (8) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(111 … 111�������
𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

)                               (9) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(100 … 000�������)
𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

                             (10) 

According to the analysis of the transaction amount length from the experiments in Section 
4.2, it is most appropriate to set the transaction amount length 𝑑𝑑 between 5 and 8. The above 
equation results in 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 = 55, 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 = 28 and 𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is taken as 48 bits for 𝑑𝑑 ∈ [5,8]. 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚=281474976710655, 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 =140737488355328. 

In the ciphertext padding and cutting algorithm, firstly, after getting the message 𝑀𝑀 and 
then encrypt 𝑀𝑀. As a result of cutting 𝑀𝑀𝐵𝐵, the last partial binary is less than 48, making it 
difficult to continue the decomposition, so padding is required to obtain 𝑀𝑀𝐶𝐶. Secondly, binary 
encoding of 𝑀𝑀𝐶𝐶 to get 𝑀𝑀𝐵𝐵. Finally, cut 𝑀𝑀𝐵𝐵 to convert each part of the cut to decimal number, 
get matrix 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 . The ciphertext padding and cutting algorithm is shown in 
Algorithm 1. 
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𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝟏𝟏: Ciphertext padding and cutting algorithm 
𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰: 𝑀𝑀 
𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 
1)𝑀𝑀𝐶𝐶 ← 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑀𝑀); 
2)𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ← 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑀𝑀𝐶𝐶); // count the number of characters in 𝑀𝑀𝐶𝐶 
3)𝐢𝐢𝐢𝐢 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶%6 ≠ 0 
4)        𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 ← 6 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶%6; 
5)        𝐟𝐟𝐟𝐟𝐟𝐟 𝑖𝑖 ← 1:𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 𝐝𝐝𝐝𝐝 
6)                𝑀𝑀𝐶𝐶 ← 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(′ ∗ ′); // Insert a random character '*' in 𝑀𝑀𝐶𝐶,to padding 
7)        𝐞𝐞𝐞𝐞𝐞𝐞 𝐟𝐟𝐟𝐟𝐟𝐟 
8)𝐞𝐞𝐞𝐞𝐞𝐞 𝐢𝐢𝐢𝐢 
9)𝑀𝑀𝐵𝐵 ← 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑀𝑀𝐶𝐶);// 𝑀𝑀𝐶𝐶 converted to binary 
10)𝐟𝐟𝐟𝐟𝐟𝐟 𝑖𝑖 ← 0: 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑀𝑀𝐵𝐵)/𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐝𝐝𝐝𝐝 
11)        𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 ← 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑀𝑀𝐵𝐵[𝑖𝑖 ∗ 𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, (𝑖𝑖 + 1) ∗ 𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐]); 
12)𝐞𝐞𝐞𝐞𝐞𝐞 𝐟𝐟𝐟𝐟𝐟𝐟 
13)𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁; 

 

As in Fig. 2, Alice sends the message 𝑀𝑀(“This is a secure channel for sending messages”), 
encrypted padding is performed, and then binary encoding is performed to obtain 
𝑀𝑀𝐵𝐵=“01010100011010000.....”. Finally, a cut is performed and each part is decimal converted 
to {𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁0,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1,⋯ ,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛}. 

3.1.2 Novel matrix decomposition method 
This section introduces the design of novel matrix decomposition methods and algorithm 
design, respectively.  

The purpose of the matrix decomposition method designed in this scheme is to decompose 
the large amount (integer) matrix 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 into two small amount matrices 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎, 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏, as shown in (1) and (2). The core concept is to decompose the diagonal element 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 of the large amount (integer) matrix 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 into a composite number or two 
composite numbers (amount ∈ 𝑁𝑁). As shown in Corollary 1. 

Corollary 1: Every natural number greater than 11 is the sum of two composite numbers 
[28] (a composite number is a number of natural numbers that is divisible by other numbers 
(except 0) in addition to 1 and itself). 

1)If 𝑛𝑛 = 3𝑘𝑘(𝑘𝑘 ≥ 4),then 
𝑛𝑛 = 3𝑘𝑘 = 6 + 3(𝑘𝑘 − 2); 

2)If 𝑛𝑛 = 3𝑘𝑘 + 1(𝑘𝑘 ≥ 4),then 
𝑛𝑛 = 3𝑘𝑘 + 1 = 4 + 3(𝑘𝑘 − 1); 

3)If 𝑛𝑛 = 3𝑘𝑘 + 2(𝑘𝑘 ≥ 4),then 
𝑛𝑛 = 3𝑘𝑘 + 2 = 8 + 3(𝑘𝑘 − 2); 

In any case, n can be expressed as the sum of two composite numbers. 
Therefore, large amounts (integers) can be decomposed into one composite (the other 

composite is 0) or two composites, as shown in (11). 
{𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖|𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 = 𝑎𝑎𝑖𝑖0 × 𝑏𝑏0𝑖𝑖 + 𝑎𝑎𝑖𝑖1 × 𝑏𝑏1𝑖𝑖,𝑎𝑎𝑖𝑖0 ∈ 𝑁𝑁,𝑎𝑎𝑖𝑖1 ∈ 𝑁𝑁, 𝑏𝑏0𝑖𝑖 ∈ 𝑁𝑁, 𝑏𝑏1𝑖𝑖 ∈ 𝑁𝑁}     (11) 

A natural number greater than 11 can be decomposed into two composite numbers, then 
the large amount (integer) matrix 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 can be decomposed into two integer matrices 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏, as shown in Corollary 2. 

Corollary 2: The large amount (integer) matrix 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 can be decomposed into 
two integer matrices 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏. 

1)If the factorization of 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖  can be represented by a composite number, that is, 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 = 𝑎𝑎𝑖𝑖0 × 𝑏𝑏0𝑖𝑖, 𝑎𝑎𝑖𝑖1=0, 𝑏𝑏1𝑖𝑖=0. 

𝑎𝑎𝑖𝑖0 = �𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗

𝑘𝑘

𝑗𝑗=0

, 𝑏𝑏0𝑖𝑖 = � 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗

𝑚𝑚

𝑗𝑗=𝑘𝑘+1
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𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 = (𝑎𝑎𝑖𝑖0 0) × �𝑏𝑏0𝑖𝑖0 � 

where 𝑘𝑘  allows the length of 𝑎𝑎𝑖𝑖0  and 𝑏𝑏0𝑖𝑖  to be distributed in a prescribed range，and 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗 denotes a factor of 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖. 

2) If 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖  factorization can be represented by two composite numbers, that is, 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 = 𝑅𝑅1 + 𝑅𝑅2 = 𝑎𝑎𝑖𝑖0 × 𝑏𝑏0𝑖𝑖 + 𝑎𝑎𝑖𝑖1 × 𝑏𝑏1𝑖𝑖. 

𝑎𝑎𝑖𝑖0 = �𝑅𝑅1𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑗𝑗

𝑘𝑘1

𝑗𝑗=0

, 𝑏𝑏0𝑖𝑖 = � 𝑅𝑅1𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑗𝑗

𝑙𝑙

𝑗𝑗=𝑘𝑘1+1

 

𝑎𝑎𝑖𝑖1 = �𝑅𝑅2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑗𝑗

𝑘𝑘2

𝑗𝑗=0

,𝑏𝑏1𝑖𝑖 = � 𝑅𝑅2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑗𝑗

h

𝑗𝑗=𝑘𝑘2+1

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 = (𝑎𝑎𝑖𝑖0 𝑎𝑎𝑖𝑖1) × �𝑏𝑏0𝑖𝑖𝑏𝑏1𝑖𝑖
� 

where 𝑘𝑘1 and 𝑘𝑘2 are such that the length distributions of 𝑎𝑎𝑖𝑖0，𝑏𝑏0𝑖𝑖 and 𝑎𝑎𝑖𝑖1，𝑏𝑏1𝑖𝑖 are in a 
prescribed range, respectively, and 𝑅𝑅1𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑗𝑗  denotes the factor of 𝑅𝑅1  and 𝑅𝑅2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑗𝑗 
denotes the factor of 𝑅𝑅2. 

Therefore, the large amount (integer) matrix 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 can be decomposed into two 
integer matrices 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏, as shown in (1) and (2). 

In the novel matrix decomposition algorithm, after obtaining the matrix 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁, 
the matrix is decomposed into two transaction amount matrices 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏. The 
decomposition algorithm is shown in Algorithm 2. 

 

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝟐𝟐: Novel matrix decomposition algorithm 

𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰: 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = �
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁0 ⋯ ∗

⋮ ⋱ ⋮
∗ ⋯ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛

� 

𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶:𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎 ,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏 
1)𝐟𝐟𝐟𝐟𝐟𝐟 𝑖𝑖 ← 0:𝑛𝑛 𝐝𝐝𝐝𝐝 
2)        𝑎𝑎𝑖𝑖0 ← 1, 𝑏𝑏0𝑖𝑖 ← 1; 
3)        𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹[𝑚𝑚] ← 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖); //Obtain all factors of 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 
4)        𝐢𝐢𝐢𝐢 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚−1 ≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  &&  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚−1 ≥ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐝𝐝𝐝𝐝 
5)                (𝑎𝑎𝑖𝑖0 0), �𝑏𝑏0𝑖𝑖0 � ←  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿1(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹[𝑚𝑚]); 
6)        𝐞𝐞𝐞𝐞𝐞𝐞 𝐢𝐢𝐢𝐢 
7)        𝐢𝐢𝐢𝐢 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚−1 < 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 
8)                (𝑎𝑎𝑖𝑖0 0), �𝑏𝑏0𝑖𝑖0 � ←  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿2(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹[𝑚𝑚],𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖); 
9)        𝐞𝐞𝐞𝐞𝐞𝐞 𝐢𝐢𝐢𝐢 
10)        𝐢𝐢𝐢𝐢 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚−1 > 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 

11)                (𝑎𝑎𝑖𝑖0 𝑎𝑎𝑖𝑖1), �𝑏𝑏0𝑖𝑖𝑏𝑏1𝑖𝑖
� ← 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿3(𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹[𝑚𝑚]); 

12)        𝐞𝐞𝐞𝐞𝐞𝐞 𝐢𝐢𝐢𝐢 
13)end for 

14)𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎 = �
𝑎𝑎00 𝑎𝑎01
⋮ ⋮
𝑎𝑎𝑛𝑛0 𝑎𝑎𝑛𝑛1

� ,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏 = �𝑏𝑏00 ⋯ 𝑏𝑏0𝑛𝑛
𝑏𝑏10 ⋯ 𝑏𝑏1𝑛𝑛

� ; 

15)𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎 ,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏; 
 

In this algorithm, 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖(𝑖𝑖 = 0 …𝑛𝑛) in matrix 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 is factorized into a set of 
factors 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖(𝑖𝑖 = 0, … ,𝑚𝑚 − 1) . In turn, we judge whether the largest factor 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚−1 in the factorization of each number 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖(𝑖𝑖 = 0 …𝑛𝑛) is within the 
normal range of transaction amounts [𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀] , and there are three 
situations. 

If 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚−1  is within the normal range of transaction amount, that is, 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚−1 ∈ [𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀]. Then 𝑎𝑎0 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚−1 , 𝑎𝑎1 =
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0, 𝑏𝑏0 = ∏ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗𝑚𝑚−2
𝑗𝑗=0 , 𝑏𝑏1 = 0. As shown in Algorithm 3. 

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝟑𝟑: LargeNumberDecomposition1 algorithm 
𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰: 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹[𝑚𝑚] 

𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶: (𝑎𝑎0 0), �𝑏𝑏00 � 

1)𝑎𝑎0 ← 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚−1; 

2)𝑏𝑏0 ←�𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗

𝑚𝑚−2

𝑗𝑗=0

; 

3)𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 (𝑎𝑎0 0), �𝑏𝑏00 � ; 
 

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝟒𝟒: LargeNumberDecomposition2 algorithm 
𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰: 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹[𝑚𝑚],𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 
𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶: (𝑎𝑎0 0), �𝑏𝑏00 � 

1)𝐟𝐟𝐟𝐟𝐟𝐟 𝑘𝑘 ← 0:𝑚𝑚− 1 𝐝𝐝𝐝𝐝 
2)        𝐢𝐢𝐢𝐢 𝑏𝑏0 >  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 
3)                𝑏𝑏0 ←  𝑏𝑏0 × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑘𝑘; 
4)        𝐞𝐞𝐞𝐞𝐞𝐞 𝐢𝐢𝐢𝐢 
5)        𝑎𝑎0 ← 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁/𝑏𝑏0; 
6)𝐞𝐞𝐞𝐞𝐞𝐞 𝐟𝐟𝐟𝐟𝐟𝐟 
7)𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 (𝑎𝑎0 0), �𝑏𝑏00 � ; 

 

If 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚−1 is less than the minimum amount, that is, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚−1 <
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 . then factor in 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹[𝑚𝑚] , multiply, and get 𝑏𝑏0 ∈
 [𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀], then record it, 𝑎𝑎0 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁/𝑏𝑏0, as shown in Algorithm 4. 

If 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚−1  is greater than the maximum transaction amount, that is, 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚−1 > 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 . Therefore, 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚−1  needs to be 
decomposed, as shown in Algorithm 5. Firstly, use A to record the product of factors other 
than the largest factorization, that is, 𝐴𝐴 ← ∏ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗𝑚𝑚−2

𝑗𝑗=0 . Then decompose 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚−1  into two numbers 𝑅𝑅1 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚−1/2  and 𝑅𝑅2 =
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚−1 − 𝑅𝑅1. Secondly, factorize these two numbers 𝑅𝑅1, 𝑅𝑅2 respectively, and 
the factor sets are 𝑅𝑅1𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑙𝑙, 𝑅𝑅2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ,with 𝑏𝑏0 and 𝑏𝑏1 to record 𝐴𝐴, that is, 𝑏𝑏0 = 𝐴𝐴, 𝑏𝑏1 = 𝐴𝐴. 
Thirdly, multiply the numbers from 𝑅𝑅1𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑙𝑙 factor set with 𝑏𝑏0 so that 𝑏𝑏0 >  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, 
multiply the numbers from 𝑅𝑅2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ factor set with 𝑏𝑏1 >  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, and then calculate 
𝑎𝑎0 , 𝑎𝑎1 , that is, 𝑎𝑎0 =  (𝑅𝑅1 × 𝐴𝐴)/ 𝑏𝑏0 , 𝑎𝑎1 = (𝑅𝑅2 × 𝐴𝐴)/ 𝑏𝑏1 . Finally, determine whether 
𝑎𝑎0,𝑎𝑎1,𝑏𝑏0,𝑏𝑏1 all satisfy the transaction amount range, if so will get 𝑎𝑎0,𝑎𝑎1,𝑏𝑏0,𝑏𝑏1. otherwise 
will be randomly regenerated (that is, 𝑅𝑅1  ← 𝑅𝑅1 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅1))), and then decomposed 
until 𝑎𝑎0,𝑎𝑎1,𝑏𝑏0,𝑏𝑏1 satisfy the transaction amount range. 

 
 

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝟓𝟓: LargeNumberDecomposition3 algorithm 
𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰: 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹[𝑚𝑚] 

𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶: (𝑎𝑎0 𝑎𝑎1), �𝑏𝑏0𝑏𝑏1
� 

1)𝐴𝐴 ←�𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗

𝑚𝑚−2

𝑗𝑗=0

; 

2)𝑅𝑅1  ← 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚−1/2; 
3)𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 
4)        𝑅𝑅2 ← 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚−1 − 𝑅𝑅1 ; 
5)        𝑅𝑅1𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑙𝑙 ← 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅1),𝑅𝑅2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ ← 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑅𝑅2); 
6)        𝑏𝑏0 ← 𝐴𝐴, 𝑏𝑏1 ← 𝐴𝐴; 
7)        𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 (𝑏𝑏0 <  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 && 𝑘𝑘 < 𝑙𝑙 ) 
8)                𝑏𝑏0 ← 𝑏𝑏0 × 𝑅𝑅1𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑘𝑘 ,𝑘𝑘 + +; 
9)        𝐞𝐞𝐞𝐞𝐞𝐞 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 
10)        𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 (𝑏𝑏1 <  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 && 𝑘𝑘 < ℎ ) 
11)                𝑏𝑏1 ← 𝑏𝑏1 × 𝑅𝑅2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑘𝑘 ,𝑘𝑘 + +; 
12)        𝐞𝐞𝐞𝐞𝐞𝐞 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 

13)        𝑎𝑎0 ←
𝑅𝑅1 × 𝐴𝐴
𝑏𝑏0

,𝑎𝑎1 ←
𝑅𝑅2 × 𝐴𝐴
𝑏𝑏1

; 

14)        𝐢𝐢𝐢𝐢 𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽(𝑎𝑎0,𝑎𝑎1,𝑏𝑏0,𝑏𝑏1)//Judge() is to determine whether the amount meets the amount range [𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀] 
15)                𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏; 
16)        𝐞𝐞𝐞𝐞𝐞𝐞 𝐢𝐢𝐢𝐢 
17)        𝑅𝑅1  ← 𝑅𝑅1 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑅𝑅1));// Generate 𝑅𝑅1 randomly within the prescribed range 
18)𝐞𝐞𝐞𝐞𝐞𝐞 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 

19)𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 (𝑎𝑎0 𝑎𝑎1), �𝑏𝑏0𝑏𝑏1
� ; 
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In the novel matrix decomposition algorithm 2, the number 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖(𝑖𝑖 = 0, … ,𝑛𝑛) in the 
matrix is finally decomposed into the sum of two composite numbers, as shown in (12)-(15). 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁0 = 𝑎𝑎00 × 𝑏𝑏00 + 𝑎𝑎01 × 𝑏𝑏10                                   (12) 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1 = 𝑎𝑎10 × 𝑏𝑏01 + 𝑎𝑎11 × 𝑏𝑏11                                   (13) 

⋯ 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛 = 𝑎𝑎𝑛𝑛0 × 𝑏𝑏0𝑛𝑛 + 𝑎𝑎𝑛𝑛1 × 𝑏𝑏1𝑛𝑛                                  (14) 

            �
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁0 ⋯ ∗

⋮ ⋱ ⋮
∗ ⋯ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛

� = �
𝑎𝑎00 𝑎𝑎01
⋮ ⋮
𝑎𝑎𝑛𝑛0 𝑎𝑎𝑛𝑛1

� × �𝑏𝑏00 ⋯ 𝑏𝑏0𝑛𝑛
𝑏𝑏10 ⋯ 𝑏𝑏1𝑛𝑛

� 

 = �
𝑎𝑎00 × 𝑏𝑏00 + 𝑎𝑎01 × 𝑏𝑏10 ⋯ ∗

⋮ ⋱ ⋮
∗ ⋯ 𝑎𝑎𝑛𝑛0 × 𝑏𝑏0𝑛𝑛 + 𝑎𝑎𝑛𝑛1 × 𝑏𝑏1𝑛𝑛

�   (15) 

The set of Number obtained by cutting in Fig. 2 is decomposed into the amount matrix 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏 by using matrix decomposition algorithm, as shown in Fig. 3 Matrix 
decomposition example figure. 

 

  
Fig. 2. Example figure of ciphertext padding 

and cutting Fig. 3. Matrix decomposition example 

3.2 Message transmission stage 
In the message transmission stage, it is the posting of the transaction to the Bitcoin transaction 
network. Firstly, the design of the transaction address generation and the design of the 
interactions for each transaction, secondly, the transactions are carried out based on the 
transaction amounts in the two transaction matrices, and finally, these transactions are posted 
to the Bitcoin transaction network. 

3.2.1 Transaction address generation design 
With the pre-shared 𝐾𝐾𝐾𝐾𝐾𝐾  off the chain, we generate the sender's address set 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  and 
receiver's address set 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 for each transaction. Then, through 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷, we further generate 
the receiver address set 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷′, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷′′ and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷′′′ for each transaction. These addresses 
form a chain relationship with each other, which can be seen in Fig. 4. 

 
Fig. 4. Address chain relationship 

01010100011010…

01110011001000…

…
01101110011001…

01110011011000…

92807422484585

126582905664357

…
121389204727155

126862183723818

0101010001101000011010010111001100100000011
010010111001100100000011000010010000001…

Cut

Decimal

Decomposition of Matrices

... ... ... ...
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Firstly, we generate the sender address set 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  for these four transactions and the 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 address set in the first transaction using 𝐾𝐾𝐾𝐾𝐾𝐾 chaining, as detailed in Algorithm 6. 
Subsequently, through the 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 set, we derive the 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷′, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷′′, 𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴′′′ address set 
(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 → 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷′ → 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷′′ → 𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴′′′), with the specific address derivation relation 
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠(𝑖𝑖+1)  ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠(𝑖𝑖) ∗ 𝐺𝐺 ∗ 𝑇𝑇 , as detailed in Algorithm 7. The primary purpose of 
Algorithm 6 and Algorithm 7 is to provide for the receiver to locate the transaction and the 
interaction of the transaction amount between addresses in order to efficiently perform 
subsequent processing. 
𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝟔𝟔: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 address sets generation algorithm 
𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰: 𝐾𝐾𝐾𝐾𝐾𝐾 
𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶:𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 
1)𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠(0) ← 𝐻𝐻𝐻𝐻𝐻𝐻(𝐾𝐾𝐾𝐾𝐾𝐾 ∗ 4); 
2)𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝(0) ← 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆256𝐾𝐾1(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠(0)); //𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆256𝐾𝐾1() is the elliptic curve equation 

3)𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆0 ← 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵58 �𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅160 �𝑆𝑆ℎ𝑎𝑎256�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝(0)��� ; 
4)𝐟𝐟𝐟𝐟𝐟𝐟 𝑖𝑖 ← 0: 3 𝐝𝐝𝐝𝐝 
5)        𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠(𝑖𝑖+1)  ← 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠(𝑖𝑖) ∗ 𝐺𝐺; 
6)        𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝(𝑖𝑖+1) ← 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆256𝐾𝐾1(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠(𝑖𝑖+1)); 

7)        𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖+1) ← 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵58 �𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅160 �𝑆𝑆ℎ𝑎𝑎256�𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑝𝑝𝑝𝑝(𝑖𝑖+1)��� ; 
8)end for 
9)𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠(0)  ← 𝐻𝐻𝐻𝐻𝐻𝐻(𝐾𝐾𝐾𝐾𝐾𝐾 ∗ 2); 
10)𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝(0) ← 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆256𝐾𝐾1(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠(0)); 

11)𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(0) ← 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵58�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅160 �𝑆𝑆ℎ𝑎𝑎256�𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝(0)��� ; 
12)𝐟𝐟𝐟𝐟𝐟𝐟 𝑖𝑖 ← 0:𝑛𝑛 𝐝𝐝𝐝𝐝 
13)        𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠(𝑖𝑖+1)  ← 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠(𝑖𝑖) ∗ 𝐺𝐺; 
14)        𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝(𝑖𝑖+1) ← 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆256𝐾𝐾1(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠(𝑖𝑖+1)); 

15)        𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑖𝑖+1) ← 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵58 �𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅160 �𝑆𝑆ℎ𝑎𝑎256�𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝(𝑖𝑖+1)��� ; 
16)end for 
17)𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ← {𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆0,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆3}; 
18)𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ← {𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷0,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷1,⋯ ,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑛𝑛}; 
19)return 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷; 

 
𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝟕𝟕: 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷∗ address sets generation algorithm 
𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰: 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 
𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶:𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷′,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷′′,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷′′′ 
1)𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(0) ← 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷′ 
2)𝐟𝐟𝐟𝐟𝐟𝐟 𝑖𝑖 ← 0: 3 𝐝𝐝𝐝𝐝 
3)        𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠

(𝑖𝑖+1)  ← 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠
𝑖𝑖 ∗ 𝐺𝐺 ∗ 4 

4)        𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝
(𝑖𝑖+1) ← 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆256𝐾𝐾1(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠

(𝑖𝑖+1)); 

5)        𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑖𝑖+1) ← 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵58 �𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅160 �𝑆𝑆ℎ𝑎𝑎256�𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝
(𝑖𝑖+1)��� ; 

6)end for 
7)𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷′ ← 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(1)、 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷′′ ← 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(2)、𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷′′′ ← 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(3); 
8)return 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷′,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷′′,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷′′′; 

3.2.2 Design of transaction amount and address interaction 
According to the transaction amount matrix 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎 , 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏  and address generation 
relationship, the corresponding amount is used as the transaction amount for each transaction. 
The first column in 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎  represents the transactions in Transaction0, where the 
relationship is (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆0

𝑎𝑎𝑖𝑖0�� 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖), and the second column represents the transactions in 
Transaction1, where the relationship is (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1

𝑎𝑎𝑖𝑖1�� 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖
′ ).The first row in 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏 

represents the transactions in Transaction2, where the relationship is (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2
𝑏𝑏0𝑖𝑖�� 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖

′′), 
and the second row represents the transactions in Transaction3, where the relationship is 
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(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆3
𝑏𝑏1𝑖𝑖�� 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖

′′′). The transaction address interaction is shown in Fig. 5. Finally post 
these four transactions to the Bitcoin transaction network. 

According to the transaction matrix 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎 , 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏  obtained from Fig. 3, its 
transaction matrix is assigned to 4 transactions as shown in Fig. 6. Because the unit of numbers 
in 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎 , 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏  is Satoshi and the unit in Bitcoin transaction network is BTC, 
1BTC=108Satoshi, the size of transaction matrix 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏 is reduced by 108 times. 

 

  
Fig. 5. Transaction Address Interaction Relationship Fig. 6. Examples of transactions 

3.3 Message reduction stage 
The receiver can derive the receiver address set 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 for each transaction by using the 

pre-shared 𝐾𝐾𝐾𝐾𝐾𝐾  off-chain and using the address set generation algorithm. Find these 4 
transactions and get the transaction amount matrix 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏, then 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎 × 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏. The algorithm of reducing message is shown in Algorithm 8. 
 
𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝟖𝟖: Reduction message algorithm 
𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰: 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎 ,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏 
𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶:𝑀𝑀 
1)𝐟𝐟𝐟𝐟𝐟𝐟 𝑖𝑖 ← 0:𝑛𝑛 𝐝𝐝𝐝𝐝 
2)        𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 ← 𝑎𝑎𝑖𝑖0 × 𝑎𝑎𝑖𝑖1 + 𝑏𝑏0𝑖𝑖 × 𝑏𝑏1𝑖𝑖; 
3)        𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ← 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖); // Decimal to Binary 
4)        𝐢𝐢𝐢𝐢 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) < 𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
5)                𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ← ′0′ ∗ (𝐵𝐵𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)) + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵; 
6)        𝐞𝐞𝐞𝐞𝐞𝐞 𝐢𝐢𝐢𝐢 
7)        𝑀𝑀𝐵𝐵 ← 𝑀𝑀𝐵𝐵 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵; 
8)end for 
9)𝑀𝑀𝐶𝐶 ← 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑀𝑀𝐵𝐵); 
10)𝑀𝑀𝐶𝐶 ← 𝑀𝑀𝐶𝐶 .𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(′ ∗ ′);// Remove character ′ ∗ ′ from 𝑀𝑀𝐶𝐶 
11)𝑀𝑀 ← 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑀𝑀𝐶𝐶); 
12)return 𝑀𝑀; 

 
Firstly, determine the transaction according to the address in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , determine the 

transaction, and then extract the transaction amount from each transaction to form the matrices 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎 , 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑏𝑏 . Secondly, the two matrices are multiplied to obtain the matrix 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. Thirdly, the diagonal numbers in this matrix will be converted, filled and 
connected in order to finally get the binary code 𝑀𝑀𝐵𝐵. Finally, decode it to get 𝑀𝑀𝐶𝐶, remove the 
padding character ′ ∗ ′ from 𝑀𝑀𝐶𝐶, and then decrypt it to get the message 𝑀𝑀. 
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4. Experiments and Analysis 
In this section, firstly, different matrix decomposition methods are compared and analyzed in 
four aspects, secondly, the scheme is analyzed in terms of resistance to detection, thirdly, the 
embedding rate comparison is analyzed, and finally, the performance of this scheme is 
compared with other schemes. The experimental environment for this article: Windows 11, 
CPU is AMD Ryzen 7 5800H with Radeon Graphics, main frequency is 3.20GHz, 16G RAM. 

4.1 Comparative analysis of different matrix decomposition methods 
In this subsection, the feasibility of the matrix decomposition method of this scheme is 
compared and analyzed from four aspects.  

4.1.1 Comparative analysis of the correctness of different matrix decomposition 
methods 
To verify the correctness of the matrix decomposition method is to decompose the matrix 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 by using the matrix decomposition method, and verify whether the result of 
the decomposition conforms to the prescribed length range 𝑑𝑑. where the elements of matrix 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 appear in the range [𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚], and it is derived in Section 
3.1. 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = 281474976710655, 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = 140737488355328. 

In this range [𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚], some numbers are randomly selected to form 
matrices 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  of different orders, the matrices 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  are decomposed 
using different matrix decomposition methods, and the decomposed matrices are observed. 
The Triangular decomposition method decomposes a matrix into a lower triangular matrix (L) 
and an upper triangular matrix (U), whose decomposed matrix has elements whose lengths are 
not in the range of 𝑑𝑑  and which also contain decimals. Therefore, the result of the 
decomposition is “False”. The Full-Rank decomposition method decomposes a matrix into 
two matrices, and the lengths of the elements of the decomposed matrix do not match the 
length range. Therefore, the result of the decomposition is “False”. The QR decomposition 
method decomposes a matrix into an orthogonal matrix (Q) and an upper triangular matrix (R), 
and the lengths of the elements of the decomposed matrix do not match the length range. 
Therefore, the result of the decomposition is “False”. The Singular Value decomposition 
method (SVD) decomposes a matrix into column orthogonal matrices (U), diagonal matrices 
(Σ), and the transpose 𝑉𝑉𝑇𝑇 of a positive definite matrix, and the lengths of the elements in the 
decomposed matrix do not fit into the length range. Therefore, the result of the decomposition 
is “False”. The matrix decomposition method of this program decomposes the matrix into two 
matrices, and the lengths of the elements in the matrix after its decomposition are in the length 
range. Therefore, the result of the decomposition is “Ture”. The results of the various matrix 
decomposition methods are shown in Table 1. If the result of the decomposition matches the 
number of its prescribed length, then it is “Ture”, otherwise it is “False”. 
 

Table 1. Comparison of the correctness of different matrix decomposition methods 
Order of 
 matrix 

Triangular 
decomposition 

Full Rank 
decomposition 

QR  
decomposition 

Singular Value  
decomposition(SVD) 

The matrix decomposition 
method of this scheme 

1 
False Ture … 

100 
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In Table 1, it can be seen that the results of Triangular decomposition, Full Rank 
decomposition, QR decomposition and SVD (singular value) decomposition for matrices of 
this range are not able to satisfy the prescribed length of compliance. The matrix 
decomposition method designed in this scheme can satisfy that the decomposition results 
conform to the prescribed length. Therefore, the matrix decomposition method of this scheme 
is feasible. 

4.1.2 Comparative analysis of transaction amount consumption of different 
matrix decomposition methods 
Comparative analysis of transaction amount consumption for different matrix decomposition 
methods is to analyze the elements in the matrix after decomposing the amount matrices 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 produced by messages of different lengths using various matrix decomposition 
methods. Where transaction amount consumption is the sum of the elements in the 
decomposed matrix. The methods compared include Triangular matrix decomposition, Full 
Rank matrix decomposition, QR matrix decomposition, SVD matrix decomposition and 
traditional methods. 

Through simulation experiments, the sum of the elements of the matrices produced by 
different methods for messages of different lengths is recorded. The different length 
information is manipulated to make the conversion to an amount matrix 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 . 
Various library functions for matrix decomposition in the compiler and the matrix 
decomposition method of this scheme are called to perform the decomposition and the sum of 
the elements in the resulting matrix after the decomposition is recorded. As the transaction 
amount cannot be negative, Triangular matrix decomposition, Full Rank matrix decomposition, 
QR matrix decomposition and SVD matrix decomposition will produce negative numbers, so 
it is necessary to process the absolute value of the elements in the factorized matrix before 
summing. And in the comparative analysis, the traditional method is added for comparison, 
where the traditional method is to transmit the covert message directly in amounts without 
matrix decomposition. Therefore, the traditional method records the sum of the numbers in the 
matrix to be decomposed. To avoid experimental contingency, we conducted 1000 
experiments on the amounts generated by messages of different lengths, and the results were 
averaged and recorded. The results of the amount consumption comparison are shown in Fig. 
7. 

  
Fig. 7. Different matrix decomposition of 

transaction amount consumption 
Fig. 8. Comparison of decomposition efficiency 

of different matrix decomposition methods 
 
In Fig. 7, the matrix decomposition method of this scheme consumes much less amount at 

different lengths than the other methods. The matrix decomposition method of this scheme 
increases the consumption of transaction amount slowly as the length of message increases. 
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The traditional and Full Rank decomposition methods consume similar amounts of 
transactions for different message lengths. The traditional method is to trade directly with 
amounts without decomposing the matrix, and what is recorded is the sum of the elements in 
the matrix to be decomposed. Although the Full Rank decomposition method decomposes the 
matrix, the decomposed matrix is almost the same as the decomposed one. This results in Full 
Rank decomposition methods that require similar amounts of consumption as traditional 
methods. Therefore, the matrix decomposition method of this scheme greatly reduces the 
consumption of the amount. 

4.1.3 Comparative analysis of decomposition efficiency of different matrix 
decomposition methods 
The matrix decomposition efficiency is the time taken to factorize a matrix. This section is to 
decompose matrices of different orders and record the time required for different methods of 
matrix decomposition respectively. The random numbers are drawn from the range 
[𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚]  to form matrices 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  of different orders. And call 
various library functions for matrix decomposition in the compiler and the matrix 
decomposition method of this scheme to perform the decomposition and record the time 
consumed. Meanwhile, in order to avoid the contingency of the experiment, each order matrix 
is randomly generated 1000 times, and then the average value is recorded. The experimental 
results are shown in Fig. 8. 

In Fig. 8, it can be seen that the time required to decompose the matrix in this scheme is 
the most consumed. The reason is that since the matrix decomposition method of this scheme 
decomposes each element on the diagonal of the matrix into one composite number or two 
composite numbers, its decomposition process and verification process will be more time 
consuming. And the other matrix decomposition methods are decomposing the matrix directly 
without the limitation of length and decimals, which makes the other matrix decomposition 
methods more efficient. In Fig. 8, although the efficiency of the matrix decomposition method 
of this scheme is much lower than other matrix decomposition methods, the matrix 
decomposition method of this scheme takes only 883.9698482ms, less than 1s, for a matrix of 
order 100. And it can be seen from Fig. 7 that the amount consumed by other matrix 
decomposition methods is much higher than the amount consumed by the present scheme. 
Therefore, the matrix decomposition method of the present scheme is desirable. 

4.1.4 Comparative analysis of embedding rate of different matrix decomposition 
methods 
The embedding ratio is the ratio between the length of a message and the number of 
transactions required to transmit a message of that length. The comparative analysis of 
embedding rate for different matrix decomposition methods is to analyze the comparison of 
embedding rate produced by different lengths of messages using different matrix 
decomposition methods. Firstly, encrypt and encode the messages of different lengths to be 
processed to obtain the large amount matrix 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 . Secondly, the large amount 
matrix is decomposed by calling various library functions for matrix decomposition in the 
compiler and the matrix decomposition method of this scheme, and the number of non-zero 
elements in the decomposed matrix, which is the number of transactions needed, is recorded. 
To avoid the contingency of the experiment, messages of different lengths are randomly 
generated 1000 times and decomposed. Finally, the number of non-zero elements in the matrix 
generated after decomposition by different matrix decomposition methods is counted, 
averaged and recorded. The experiments are compared and analyzed as shown in Fig. 9. 
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Fig. 9. Comparison of embedding rates of 
different matrix decomposition methods 

Fig. 10. Distribution of transaction amount 
length 

 
In Fig. 9, the embedding rate of this scheme is lower than other matrix decomposition 

methods. The Triangular decomposition method and the Full Rank decomposition method 
appear to overlap in Fig. 9, which is due to the large elements in the decomposed matrix. The 
Triangular decomposition method decomposes the matrix into an upper triangular matrix and 
a lower triangular matrix, which are all non-zero elements. The Full Rank Decomposition 
method decomposes the matrix into two matrices, the first matrix with all non-zero elements 
and the second matrix with all non-zero elements on the diagonal only. As a result, it leads to 
equal sum of non-zero elements in the matrix after the Triangular decomposition method and 
the Full rank decomposition method. Although the other matrix decomposition methods have 
high embedding rates, it can be seen from Table 1 that the other matrix decomposition 
methods cannot effectively control the elements in the decomposed matrix, and there are 
problems such as fractional and minus numbers in the decomposed matrix. Therefore, the 
matrix decomposition method of this scheme is the most suitable one to be chosen. 

4.2 Resistance to detection 
The transaction has problems such as easy detection if it contains attributes such as special 
transaction amounts (e.g., specially large, specially small) [29][30]. Since the covert 
communication carrier in the design of this scheme is the transaction amount, it is important 
to control the transaction amount so that the transaction carrying the information has some 
resistance to detection. In order to avoid that this scheme will generate special transaction 
amounts, statistical analysis of the amount lengths in real transaction networks and analysis of 
the frequency of transaction amounts are needed to obtain the range of amount lengths 𝑑𝑑 
designed in this scheme. 

Firstly, the statistical analysis of the amount lengths in the real transaction network is 
performed to determine the real range of transaction amount lengths. Since this scheme is 
implemented on the Bitcoin transaction network, we crawled the latest transaction blocks 
(769473-771632) from the Bitcoin transaction network for statistical analysis, and crawled a 
total of 15535697 transaction amounts. Crawl the transaction amount in the transaction block 
in Satoshi units (1BTC=108Satoshi) and count the number of occurrences of the length of each 
transaction amount. As shown in Fig. 10. 

Secondly, to further determine the range of lengths 𝑑𝑑, the frequency of amounts in each 
length was counted. We refer to the detection resistance experiments in the literature [21], 
whose experiments determine the transaction amount length from the perspective of 
fluctuations through the transaction amount and make the NCCM scheme resistant to detection. 
In order to avoid the impact of special transaction amounts on the statistical experiment of 
transaction amount frequency, and also to ensure the number of experimental data sets. The 
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crawled amount dataset is first arranged in positive order, the small amount data in the first 5% 
of the sorted amount dataset and the large amount data in the last 5% are deleted, and the 
frequency statistics are analyzed for the middle 90% of the data. Where the middle 90% of the 
data, the range of the amount length can be calculated as [4,8] according to Fig. 10. Then, we 
verify that the amounts are uniformly distributed in each length, and Fig. 11 shows the 
frequency distribution of transaction amounts. The frequency statistics for the amount range 
[0,1.0E+8], with 2.0E+7 as the step size, are shown in Fig. 11 (a). Although the amount of the 
range [0,2.0E+7] accounts for 95.352%, the amount of the interval [2.0E+7, 1.0E+8] is more 
uniform. In order to verify whether the amount data of length 8 are uniformly distributed, that 
is, to verify whether the amounts in the range [1.0E+7,1.0E+8] are uniformly distributed, this 
experiment performs a frequency analysis for the range [0,2.0E+7], as shown in Fig. 11 (b). 
In Fig. 11 (b), the range [1.0E+7,2.0E+7] accounts for 3.811% of the range [0,2.0E+7], 
therefore, the amount length is 8 when the amount of the range [1.0E+7,1.0E+8]. The 
frequency distribution of this range is more uniform and the length can be 8. In Fig. 11 (b), 
the frequency of the amount range [0,2.0E+6] is 79.985%, and the amount of the interval 
[2.0E+6,1.0E+7] is uniformly distributed. To verify whether the amounts of length 7 are 
evenly distributed, that is, to verify whether the amounts of the range [1.0E+7,1.0E+8] are 
uniformly distributed, this experiment performs frequency statistics for the amount range 
[0,2.0E+6] with 2.0E+5 as the step size, as shown in Fig. 11 (c). It can be seen from Fig. 11 
(b) and Fig. 11 (c) that the length is 7 when the data of the range [1.0E+6,1.0E+7]. The 
frequency distribution of this range is uniform and does not fluctuate much, therefore, the 
length can also be 7. For the amount range [0, 2.0E+5], frequency statistics were performed 
with 2.0E+4 as the step size, as shown in Fig. 11 (d). For the amount range [0, 2.0E+4], 
frequency statistics are performed with 2.0E+3 as the step size, as shown in Fig. 11 (e). Since 
the statistical range [0,8.0E+3] has a frequency of 0, this range is combined together in Fig. 
11 (e). From Fig. 11 (c), Fig. 11 (d) and Fig. 11 (e), it can be seen that the frequency of each 
range is more uniform when the length is 5 and 6, so the length can be 5 or 6. From Fig. 11 
(e), it can be seen that in the range [0,1.0E+4] only the range [8.0E+3,1.0E+4] has a frequency, 
and when the length is lower than 5, that is, the range [0, 1.0E+4], the data will be distributed 
in the first 5% of the small amount data with some specificity. Therefore, the length can be 5, 
but not lower than 5. 
 

 
Fig. 11. Frequency distribution of transaction amount 

 
Finally, in the method of designing matrix decomposition, the length of the amount of the 

decomposed amount matrix is controlled to be 5-8 (𝑑𝑑 ∈[5,8]), so that the amount carrying 
covert messages has some resistance to detection.  
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4.3 Comparative analysis of embedding rate 
The comparative embedding rate analysis is a comparative embedding rate analysis of this 
scheme with several amount-based covert communication schemes. To simulate the 
embedding rate of this scheme, this section continues to imitate the embedding rate experiment 
of this scheme in Section 4.1.4. The messages are processed into large amount matrices 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁, which are decomposed using the matrix decomposition method designed in 
this scheme, and the number of non-zero elements in the decomposed matrix, which is the 
number of transactions required, is recorded. In the literature [19], the embedding rate of 
HMAC-based MBE scheme is 14.07 bit/t (average) and the embedding rate of Hash-MBE 
scheme is 28.12 bit/t (average) . The embedding rate comparison is shown in Fig. 12. 
 

 
Fig. 12. Comparative analysis of embedding rate 

 
From Fig. 12, it can be seen that the number of transactions required increases with the 

increase in the length of the binary encoded form ciphertext 𝑀𝑀𝐵𝐵. And the embedding rate of 
the scheme proposed in this paper fluctuates only slightly, and the average value of the 
embedding rate of the scheme can be calculated as 15.02 bit/t. At the same time, the proposed 
scheme is higher than HMAC-based MBE scheme and lower than Hash- MBE scheme 
compared with other schemes. 

4.4 Performance comparison with other schemes 
The performance comparison is done from two aspects with other schemes and its comparison 
is shown in Table 2. Firstly, this paper compares with other schemes in terms of embedding 
rate. The BLOCCE scheme[12] is to convert the information to binary embedded in the 
transaction address of each transaction with an embedding rate of 1 bit/t. The HMAC-based 
MBE scheme[19] is to embed the information onto the Value field of the Ethereum with an 
embedding rate of 14.07 bit/t. The Hash-based MBE scheme further improves on the HMAC-
based MBE scheme by increasing the embedding rate, which is 28.12 bit/t. TISCC[22] on the 
chain is to embed the information is to the relevant field of the Ethereum transaction and call 
the smart contract to transmission the information with an embedding rate of 29 bit/t. In the 
scheme of this paper, the information is embedded to the transaction amount using a novel 
matrix decomposition method with an embedding rate of 15.02 bit/t. Finally, in terms of 
transmission efficiency, we compare how many transactions are required to complete the 
transmission of the message “This is a secret message” by different schemes. The BLOCCE 
scheme requires 192 transactions as each bit is embedded on each address. HMAC-based MBE 
and Hash-based MBE can calculate the number of transactions based on their embedding rates, 
which are 14 transactions and 7 transactions, respectively. NCCM[21] is a transmission of 
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information embedded in transaction amounts and interaction relationships, and the number 
of transactions required is 16 transactions. This scheme is experimentally simulated to require 
12 transactions.  
 

Table 2. Performance comparison with other schemes 
 BLOCCE 

[12]  
HMAC-based 

MBE[19] 
Hash-based  

MBE[19] 
NCCM 

[21] 
TISCC 

[22] 
The scheme 
of this paper 

Embedding Rate 1 bit/t 14.07bit/t 
(average) 

28.12 bit/t 
(average) - 29 bit/t 15.02bit/t 

Number of transactions required to transmit 
the message “This is a secret message” 192 14 7 16 - 12 

Resistance to detection - Yes Yes Yes - Yes 

Environment Bitcoin Ethereum Ethereum Bitcoin Ethereum Bitcoin 

5. Conclusion 
In this paper, we propose a covert communication scheme based on the matrix decomposition 
method of digital currency transaction amount, which effectively alleviates the problems of 
low embedding rate, large transaction amount and easy detection. The scheme employs a novel 
matrix decomposition method to improve the embedding rate and give the scheme some 
resistance to detection. However, the scheme may lead to greater amount consumption 
compared to schemes that do not involve amounts as carriers. Compared to the scheme 
designed with amounts as carriers, the scheme successfully reduces the consumption of 
transaction amounts and further improves the anti-detectability by skillfully distributing the 
decomposed transaction amount matrix elements in the most appropriate length range. The 
experimental results show that the scheme achieves an embedding rate of 15.02 bit/t within 
the optimal length range [5, 8]. Therefore, not only the embedding rate and the reduced 
transaction amount consumption are improved, but also the resistance to detection. In the 
future, we can apply the scheme in this paper to covert communication scenarios with numbers. 
For example, in financial transactions, covert communication with numbers can be used to 
confirm the authenticity of the transaction. By hiding some covert information in the amount 
or transaction code, both parties can verify the validity of the transaction and prevent fraud 
during the transaction process. 
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