DOI QR코드

DOI QR Code

Characterizing and modelling nonstationary tri-directional thunderstorm wind time histories

  • Y.X. Liu (Department of Civil and Environmental Engineering, University of Western Ontario) ;
  • H.P. Hong (Department of Civil and Environmental Engineering, University of Western Ontario)
  • Received : 2023.06.29
  • Accepted : 2024.01.23
  • Published : 2024.04.25

Abstract

The recorded thunderstorm winds at a point contain tri-directional components. The probabilistic characteristics of such recorded winds in terms of instantaneous mean wind speed and direction, and the probability distribution and the time-frequency dependent crossed and non-crossed power spectral density functions for the high-frequency fluctuating wind components are unclear. In the present study, we analyze the recorded tri-directional thunderstorm wind components by separating the recorded winds in terms of low-frequency time-varying mean wind speed and high-frequency fluctuating wind components in the alongwind direction and two orthogonal crosswind directions. We determine the time-varying mean wind speed and direction defined by azimuth and elevation angles, and analyze the spectra of high-frequency wind components in three orthogonal directions using continuous wavelet transforms. Additionally, we evaluate the coherence between each pair of fluctuating winds. Based on the analysis results, we develop empirical spectral models and lagged coherence models for the tri-directional fluctuating wind components, and we indicate that the fluctuating wind components can be treated as Gaussian. We show how they can be used to generate time histories of the tri-directional thunderstorm winds.

Keywords

Acknowledgement

Financial support was received from the Natural Sciences and Engineering Research Council of Canada. We thank Dr. M. Burland for providing us with the thunderstorm wind records. We thank X.Z. Cui for fruitful discussion throughout the present study.

References

  1. Bayram, M. and Baraniuk, R.G. (1996), "Multiple window time-frequency analysis", Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis TFTS-96, 173-176, June.
  2. Brusco, S., Buresti, G. and Piccardo, G. (2022), "Thunderstorm-induced mean wind velocities and accelerations through the continuous wavelet transform", J. Wind Eng. Ind. Aerod., 221, 104886.
  3. Burlando, M., Zhang, S. and Solari, G. (2018), "Monitoring, cataloguing, and weather scenarios of thunderstorm outflows in the northern Mediterranean", Nat. Haz. Earth Syst. Sci., 18(9), 2309-2330. https://doi.org/10.1016/j.jweia.2021.104886.
  4. Chen, L. and Letchford, C.W. (2007), "Numerical simulation of extreme winds from thunderstorm downbursts", J. Wind Eng. Ind. Aerod., 95(9-11), 977-990. https://doi.org/10.5194/nhess-18-2309-2018.
  5. Choi, E.C. and Hidayat, F.A. (2002), "Gust factors for thunderstorm and non-thunderstorm winds", J. Wind Eng. Ind. Aerod., 90(12-15), 1683-1696. https://doi.org/10.1016/j.jweia.2007.01.021.
  6. Cohen, L. (1995), Time-frequency Analysis, Prentice Hall, New Jersey, USA. https://doi.org/10.1016/S0167-6105(02)00279-9.
  7. Cohen, E.A. and Walden, A.T. (2010), "A statistical study of temporally smoothed wavelet coherence", IEEE Transact. Signal Processing, 58(6), 2964-2973. https://doi.org/10.1109/TSP.2010.2043139
  8. Daubechies, I. (1992), Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics. https://doi.org/10.1109/TSP.2010.2043139.
  9. Davenport, A.G. (1961), "The application of statistical concepts to the wind loading of structures", Proceedings of the Institution of Civil Engineers, 19(4), 449-472. https://doi.org/10.1680/iicep.1961.11304.
  10. Davenport, A.G. (1964), "Note on the distribution of the largest value of a random function with application to gust loading", Proceedings of the Institution of Civil Engineers, 28(2), 187-196. https://doi.org/10.1680/iicep.1964.10112.
  11. Deodatis, G. (1996), "Non-stationary stochastic vector processes: Seismic ground motion applications", Probabilistic Eng. Mech., 11(3), 149-167. https://doi.org/10.1016/0266-8920(96)00007-0
  12. Hong, H.P. (2023), "On the estimation of the evolutionary power spectral density", Mech. Syst. Signal Processing, 190, 110131. https://doi.org/10.1016/0266-8920(96)00007-0.
  13. Hong, H.P., Cui, X.Z. and Qiao, D. (2021a), "An algorithm to simulate nonstationary and non-Gaussian stochastic processes", J. Infrastruct. Preservation Resilience, 2(1), 1-15. https://doi.org/10.1016/j.ymssp.2023.110131.
  14. Hong, H.P., Cui, X.Z. and Qiao, D. (2022), "Simulating nonstationary non-Gaussian vector process based on continuous wavelet transform", Mech. Syst. Signal Processing, 165, 108340. https://doi.org/10.1186/s43065-021-00030-5.
  15. Hong, H.P., Cui, X.Z. and Xiao, M.Y. (2021b), "Modelling and simulating thunderstorm/downburst winds using S-transform and discrete orthonormal S-transform", J. Wind Eng. Ind. Aerod., 212, 104598. https://doi.org/10.1016/j.jweia.2021.104598.
  16. Hong, H.P. (2016), "Modeling of nonstationary winds and its applications", J. Eng. Mech., 142(4), 04016004.
  17. Huang, G., Zheng, H., Xu, Y. L. and Li, Y. (2015), "Spectrum models for nonstationary extreme winds", J. Struct. Eng., 141(10), 04015010. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001047.
  18. Lilly, J.M. and Olhede, S.C. (2012), "Generalized Morse wavelets as a superfamily of analytic wavelets", IEEE Transact. Signal Processing, 60(11), 6036-6041. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001257.
  19. Liu, P.C. (1994), "Wavelet spectrum analysis and ocean wind waves", Wavelet Anal. Its Appl., 4, 151-166. https://doi.org/10.1109/TSP.2012.2210890.
  20. Liu, Y.X. and Hong, H.P. (2023a), "Analyzing, modelling, and simulating nonstationary thunderstorm winds in two horizontal orthogonal directions at a point in space", J. Wind Eng. Ind. Aerod., 237, 105412. https://doi.org/10.1016/B978-0-08-052087-2.50012-8.
  21. Liu, Y.X. and Hong, H.P. (2023b), "Data-driven approach for generating tricomponent nonstationary non-gaussian thunderstorm wind records using continuous wavelet transforms and S-transform", J. Struct. Eng., 149(12), 04023175. https://doi.org/10.1016/j.jweia.2023.105412.
  22. McCullough, M., Kwon, D.K., Kareem, A. and Wang, L. (2014), "Efficacy of averaging interval for nonstationary winds", J. Eng. Mech., 140(1), 1-19. https://doi.org/10.1061/JSENDH.STENG-12313.
  23. Olesen, H.R., Larsen, S.E. and Hojstrup, J. (1984), "Modelling velocity spectra in the lower part of the planetary boundary layer", Bound. Lay. Meteorol., 29(3), 285-312. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000641.
  24. Olhede, S.C. and Walden, A.T. (2002), "Generalized Morse wavelets", IEEE Transact. Signal Processing, 50(11), 2661-2670. https://doi.org/10.1109/TSP.2002.804066
  25. Percival, D.B. and Walden, A.T. (2000), Wavelet Methods for Time Series Analysis, Cambridge University Press, New York, NY, USA. https://doi.org/10.1109/TSP.2002.804066.
  26. Roncallo, L. and Solari, G. (2020), "An evolutionary power spectral density model of thunderstorm outflows consistent with real-scale time-history records", J. Wind Eng. Ind. Aerod., 203, 104204.
  27. Shinozuka, M. and Jan, C.M. (1972), "Digital simulation of random processes and its applications", J. Sound Vib., 25(1), 111-128. https://doi.org/10.1016/j.jweia.2020.104204.
  28. Simiu, E. and Scanlan, R.H. (1996), Wind Effects on Structures: Fundamentals and Applications to Design, John Wiley, New York, NY, USA. https://doi.org/10.1016/0022-460X(72)90600-1.
  29. Solari, G. (2020), "Thunderstorm downbursts and wind loading of structures: Progress and prospect", Front. Built Environ., 6, 63. https://doi.org/10.3389/fbuil.2020.00063.
  30. Solari, G., Burlando, M., De Gaetano, P. and Repetto, M.P. (2015), "Characteristics of thunderstorms relevant to the wind loading of structures", Wind Struct, 20(6), 763-791. http://dx.doi.org/10.12989/was.2015.20.6.763.
  31. Stockwell, R.G., Mansinha, L. and Lowe, R.P. (1996), "Localization of the complex spectrum: the S transform", IEEE Transact. Signal Processing, 44(4), 998-1001. https://doi.org/10.1109/78.492555
  32. Su, Y., Huang, G. and Xu, Y.L. (2015), "Derivation of time-varying mean for non-stationary downburst winds", J. Wind Eng. Ind. Aerod., 141, 39-48. https://doi.org/10.1109/78.492555.
  33. Torrence, C. and Compo, G.P. (1998), "A practical guide to wavelet analysis", Bull. Amer. Meteorol. Soc., 79(1), 61-78. https://doi.org/10.1016/j.jweia.2015.02.008.
  34. Torrence, C. and Webster, P.J. (1999), "Interdecadal changes in the ENSO-monsoon system", J. Climate, 12(8), 2679-2690. https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.
  35. Tubino, F. and Solari, G. (2020), "Time varying mean extraction for stationary and nonstationary winds", J. Wind Eng. Ind. Aerod., 203, 104187. https://doi.org/10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2.
  36. Vanmarcke, E.H. (1976), "Structural response to earthquakes", Chapter 8 in Seismic Risk and Engineering Decisions, Edited by C. Lomitz and E. Rosenblueth. https://doi.org/10.1016/j.jweia.2020.104187.
  37. Ventosa, S., Simon, C., Schimmel, M., Danobeitia, J.J. and Manuel, A. (2008), "The S-transform from a wavelet point of view", IEEE Transact. Signal Processing, 56(7), 2771-2780. https://doi.org/10.1016/B978-0-444-41494-6.50011-4.
  38. Xiao, M.Y. and Hong, H.P. (2022), "Modeling nonstationary non-Gaussian hurricane wind velocity and gust factor", J. Struct. Eng., 148(2), 04021263. https://doi.org/10.1109/TSP.2008.917029.
  39. Zhang, S., Solari, G., Burlando, M. and Yang, Q. (2019), "Directional decomposition and properties of thunderstorm outflows", J. Wind Eng. Ind. Aerod., 189, 71-90. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003243.
  40. Zhang, S., Solari, G., De Gaetano, P., Burlando, M. and Repetto, M.P. (2018), "A refined analysis of thunderstorm outflow characteristics relevant to the wind loading of structures", Probabilistic Eng. Mech., 54, 9-24. https://doi.org/10.1016/j.probengmech.2017.06.003.
  41. Zhao, S., Ge, Y. and Kopp, G. (2022), "Assessment of gust factors and wind speed decomposition methods for thunderstorms", J. Wind Eng. Ind. Aerod., 223, 104953. https://doi.org/10.1016/j.jweia.2022.104953.