DOI QR코드

DOI QR Code

Effect of different storage media on elemental analysis and microhardness of cervical cavity margins restored with a bioactive material

  • Hoda Saleh Ismail (Conservative Dentistry Department, Faculty of Dentistry, Mansoura University) ;
  • Brian Ray Morrow (Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center) ;
  • Ashraf Ibrahim Ali (Conservative Dentistry Department, Faculty of Dentistry, Mansoura University) ;
  • Rabab Elsayed Elaraby Mehesen (Conservative Dentistry Department, Faculty of Dentistry, Mansoura University) ;
  • Salah Hasab Mahmoud (Conservative Dentistry Department, Faculty of Dentistry, Mansoura University) ;
  • Franklin Garcia-Godoy (Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center)
  • Received : 2022.05.29
  • Accepted : 2023.01.12
  • Published : 2024.02.28

Abstract

Objectives: This study aimed to investigate the elemental analysis and microhardness of a bioactive material (Activa) and marginal tooth structure after storage in different media. Materials and Methods: Fifteen teeth received cervical restorations with occlusal enamel and gingival dentin margins using the tested material bonded with a universal adhesive, 5 of them on the 4 axial surfaces and the other 10 on only the 2 proximal surfaces. The first 5 teeth were sectioned into 4 restorations each, then stored in 4 different media; deionized water, Dulbecco's phosphate buffered saline (DPBS), Tris buffer, and saliva. The storage period for deionized water was 24 hours while it was 3 months for the other media. Each part was analyzed by scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) analysis for different substrates/distances and the wt% of calcium, phosphorus, silica, and fluoride were calculated. The other 10 teeth were sectioned across the restoration, stored in either Tris buffer or saliva for 24 hours or 3 months, and were evaluated for microhardness of different substrates/areas. Data were analyzed using analysis of variance and Tukey's post hoc test. Results: Enamel and dentin interfaces in the DPBS group exhibited a significant increase in calcium and phosphorus wt%. Both silica and fluoride significantly increased in tooth structure up to a distance of 75 ㎛ in the 3-month-media groups than the immediate group. Storage media did not affect the microhardness values. Conclusions: SEM-EDS analysis suggests an ion movement between Activa and tooth structure through a universal adhesive while stored in DPBS.

Keywords

Acknowledgement

The authors acknowledge the UTHSC Office of Scientific Writing for editing the manuscript.

References

  1. Tiskaya M, Al-Eesa NA, Wong FS, Hill RG. Characterization of the bioactivity of two commercial composites. Dent Mater 2019;35:1757-1768. https://doi.org/10.1016/j.dental.2019.10.004
  2. Jefferies SR, Fuller AE, Boston DW. Preliminary evidence that bioactive cements occlude artificial marginal gaps. J Esthet Restor Dent 2015;27:155-166. https://doi.org/10.1111/jerd.12133
  3. Lai G, Li M. Secondary caries. In: Li MY, editor. Contemporary approach to dental caries. Rijeka, Croatia: InTech; 2012. p403-422.
  4. Cenci MS, Pereira-Cenci T, Cury JA, Ten Cate JM. Relationship between gap size and dentine secondary caries formation assessed in a microcosm biofilm model. Caries Res 2009;43:97-102. https://doi.org/10.1159/000209341
  5. Vallittu PK, Boccaccini AR, Hupa L, Watts DC. Bioactive dental materials-Do they exist and what does bioactivity mean? Dent Mater 2018;34:693-694. https://doi.org/10.1016/j.dental.2018.03.001
  6. Gandolfi MG, Taddei P, Tinti A, Dorigo ED, Prati C. Alpha-TCP improves the apatite-formation ability of calcium-silicate hydraulic cement soaked in phosphate solutions. Mater Sci Eng C 2011;31:1412-1422. https://doi.org/10.1016/j.msec.2011.05.012
  7. Ruengrungsom C, Burrow MF, Parashos P, Palamara JE. Evaluation of F, Ca, and P release and microhardness of eleven ion-leaching restorative materials and the recharge efficacy using a new Ca/P containing fluoride varnish. J Dent 2020;102:103474.
  8. Gandolfi MG, Ciapetti G, Taddei P, Perut F, Tinti A, Cardoso MV, et al. Apatite formation on bioactive calcium-silicate cements for dentistry affects surface topography and human marrow stromal cells proliferation. Dent Mater 2010;26:974-992. https://doi.org/10.1016/j.dental.2010.06.002
  9. Fuss M, Wicht MJ, Attin T, Derman SH, Noack MJ. Protective buffering capacity of restorative dental materials in vitro. J Adhes Dent 2017;19:177-183. PUBMED
  10. Kirsten GA, Rached RN, Mazur RF, Vieira S, Souza EM. Effect of open-sandwich vs. adhesive restorative techniques on enamel and dentine demineralization: an in situ study. J Dent 2013;41:872-880. https://doi.org/10.1016/j.jdent.2013.07.003
  11. Kirsten GA, Takahashi MK, Rached RN, Giannini M, Souza EM. Microhardness of dentin underneath fluoride-releasing adhesive systems subjected to cariogenic challenge and fluoride therapy. J Dent 2010;38:460-468. https://doi.org/10.1016/j.jdent.2010.02.006
  12. Al-Harbi F, Kaisarly D, Michna A, ArRejaie A, Bader D, El Gezawi M. Cervical interfacial bonding effectiveness of class II bulk versus incremental fill resin composite restorations. Oper Dent 2015;40:622-635. https://doi.org/10.2341/14-152-L
  13. Irie M, Suzuki K, Watts DC. Delayed polishing technique on glass-ionomer restorations. Jpn Dent Sci Rev 2009;45:14-22. https://doi.org/10.1016/j.jdsr.2009.01.001
  14. Magura ME, Kafrawy AH, Brown CE Jr, Newton CW. Human saliva coronal microleakage in obturated root canals: an in vitro study. J Endod 1991;17:324-331. https://doi.org/10.1016/S0099-2399(06)81700-0
  15. Moheet IA, Luddin N, Ab Rahman I, Masudi SM, Kannan TP, Nik Abd Ghani NR. Analysis of ionicexchange of selected elements between novel nano-hydroxyapatite-silica added glass ionomer cement and natural teeth. Polymers (Basel) 2021;13:3504.
  16. Thakur AK, Srivastava N, Chakrabarty T, Rebary B, Patidar R, Sanghavi RJ, et al. An improved protocol for electrodialytic desalination yielding mineral-balanced potable water. Desalination 2014;335:96-101. https://doi.org/10.1016/j.desal.2013.12.007
  17. Parirokh M, Askarifard S, Mansouri S, Haghdoost AA, Raoof M, Torabinejad M. Effect of phosphate buffer saline on coronal leakage of mineral trioxide aggregate. J Oral Sci 2009;51:187-191. https://doi.org/10.2334/josnusd.51.187
  18. Han L, Okiji T, Okawa S. Morphological and chemical analysis of different precipitates on mineral trioxide aggregate immersed in different fluids. Dent Mater J 2010;29:512-517. https://doi.org/10.4012/dmj.2009-133
  19. Zain S, Davis GR, Hill R, Anderson P, Baysan A. Mineral exchange within restorative materials following incomplete carious lesion removal using 3D non-destructive XMT subtraction methodology. J Dent 2020;99:103389.
  20. Chun K, Choi H, Lee J. Comparison of mechanical property and role between enamel and dentin in the human teeth. J Dent Biomech 2014;5:1758736014520809.
  21. Nicholson JW. Glass ionomer dental cements: update. Mater Technol 2010;25:8-13. https://doi.org/10.1179/175355509X12614966220506
  22. Ngo H, Mount GJ, Peters MC. A study of glass-ionomer cement and its interface with enamel and dentin using a low-temperature, high-resolution scanning electron microscopic technique. Quintessence Int 1997;28:63-69. PUBMED
  23. Sauro S, Makeeva I, Faus-Matoses V, Foschi F, Giovarruscio M, Maciel Pires P, et al. Effects of ionsreleasing restorative materials on the dentine bonding longevity of modern universal adhesives after load-cycle and prolonged artificial saliva aging. Materials (Basel) 2019;12:722.
  24. Tay FR, Pashley DH, Suh B, Carvalho R, Miller M. Single-step, self-etch adhesives behave as permeable membranes after polymerization. Part I. Bond strength and morphologic evidence. Am J Dent 2004;17:271-278. PUBMED
  25. Itthagarun A, Tay FR, Pashley DH, Wefel JS, Garcia-Godoy F, Wei SH. Single-step, self-etch adhesives behave as permeable membranes after polymerization. Part III. Evidence from fluid conductance and artificial caries inhibition. Am J Dent 2004;17:394-400. PUBMED
  26. Goncalves LL, Da Silva TM, Prakki A, Barcellos DC, Caneppele TM, De Oliveira HP, et al. Universal adhesive: the effect of different simulated pulpal pressure fluids and bonding modes to dentin. Odontology 2022;110:62-69. https://doi.org/10.1007/s10266-021-00633-0
  27. Chen C, Niu LN, Xie H, Zhang ZY, Zhou LQ, Jiao K, et al. Bonding of universal adhesives to dentine--old wine in new bottles? J Dent 2015;43:525-536. https://doi.org/10.1016/j.jdent.2015.03.004
  28. Cruz J, Silva A, Eira R, Sousa B, Lopes M, Cavalheiro A. Dentin permeability and nanoleakage of universal adhesives in etch-and-rinse vs self-etch modes. Oper Dent 2021;46:293-305. https://doi.org/10.2341/19-276-L
  29. Pires PM, Neves AA, Makeeva IM, Schwendicke F, Faus-Matoses V, Yoshihara K, et al. Contemporary restorative ion-releasing materials: current status, interfacial properties and operative approaches. Br Dent J 2020;229:450-458. https://doi.org/10.1038/s41415-020-2169-3
  30. Yamamoto H, Iwami Y, Unezaki T, Tomii Y, Ebisu S. Fluoride uptake in human teeth from fluoridereleasing restorative material in vivo and in vitro: two-dimensional mapping by EPMA-WDX. Caries Res 2001;35:111-115. https://doi.org/10.1159/000047441
  31. Wiegand A, Buchalla W, Attin T. Review on fluoride-releasing restorative materials--fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent Mater 2007;23:343-362. https://doi.org/10.1016/j.dental.2006.01.022
  32. Gaspersic D. Enamel microhardness and histological features of composite enamel pearls of different size. J Oral Pathol Med 1995;24:153-158. https://doi.org/10.1111/j.1600-0714.1995.tb01157.x
  33. Jang JH, Lee MG, Ferracane JL, Davis H, Bae HE, Choi D, et al. Effect of bioactive glass-containing resin composite on dentin remineralization. J Dent 2018;75:58-64. https://doi.org/10.1016/j.jdent.2018.05.017