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UNSTEADY FLOW OF BINGHAM FLUID IN A TWO
DIMENSIONAL ELASTIC DOMAIN

MosBAH KADDOUR, FARID MESSELMI, AND SAF SALIM

ABSTRACT. The main goal of this work is to study an initial boundary
value problem relating to the unsteady flow of a rigid, viscoplastic, and
incompressible Bingham fluid in an elastic bounded domain of R?. By us-
ing the approximation sequences of the Faedo-Galerkin method together
with the regularization techniques, we obtain the results of the existence
and uniqueness of local solutions.

1. Introduction

This work is devoted to the study of the existence of the solution to some
boundary-value problems relating to the unsteady flow of a rigid, viscoplas-
tic and incompressible Bingham fluid in an elastic domain. A Bingham fluid
is a non-Newtonian viscoplastic fluid that possesses a yield stress that must
be outstripped before the fluid will flow. In many geological and industry
materials, Bingham fluids are used as a general mathematical basis of flow
in drilling engineering, including in the handling of slurries, granular suspen-
sions, etc. Bingham fluid is named after Eugene C. Bingham, who declared
its mathematical explanation. It is well known that Bingham first investigated
the Bingham-plastic constitutive equation [2,10], which is the most often used
model for a viscoplastic material. That regions of rigid-solid and inelastic-fluid
behavior are separated in terms of von Mises’ yield condition. The constitutive
equation relating the deviators 7 stress and rate-of-strain «y tensors is given as
(3,10]

T, .
(11) T=1\To + 77) s (T > TT]) )
0

(1.2) 5 =
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where 7 and 7 are the second invariants of the tensors, defined as

1 1
1 2 . 1. .\?2
(13) T = (2T7 T) y V= <2’Y » Y ) )

and 7o and 7, are called the plastic viscosity and the yield stress, respectively.
Equations (1.1)-(1.2) define two distinct regions of flow. In the first the in-
variant 7 exceeds the yield stress and the material flows with a non-Newtonian
viscosity function defined as n(y ) := 79 + 2. In the second the stress is less

than the yield value and the material behaves as a rigid solid. The fluid and
solid regions are separated by a distinct yield surface. Recently, an exploration
of the laws for plastic flow has been studied by Bingham [1]. Darby and Melson
[6] formulated an empirical expression to guess the friction loss factor for the
drift of a Bingham fluid. Bird et al. [4] analyzed the rheology and flow phe-
nomena of viscoplastic materials. Convective heat transfer for Bingham plastic
inside a circular pipe and the numerical approach for hydro-dynamically emerg-
ing flow and the simultaneously emerging flow were studied by Min et al. [9].
Liu and Mei [8] considered the slow spread of a Bingham fluid sheet on an
inclined plane. For Bingham fluids, the Couette-Poiseuille flow between two
porous plates, considering slip conditions, was investigated by Chen and Zhu
[5]. Sreekala and Kesavareddy [13] mentioned the Hall impacts on magneto-
hydrodynamics (MHD) Bingham plastic flow over a porous medium, including
uniform suction and injection. For Bingham fluids, the MHD flow for an un-
steady case considering Hall currents was described by Parvin et al. [11]. Rees
and Bassom [12] considered Bingham fluids over a porous medium following a
rapid modification of surface heat flux. The paper is organized as follows. In
Section 2 we present the mechanical problem of the two-dimensional unsteady
flow of a rigid, viscoplastic, and incompressible Bingham which occupy a do-
main € in an elastic domain having Q; C R? as thickness. We introduce some
notation and preliminaries. Moreover, we derive the variational formulation of
the problem. In Section 3, we present the mathematical formulation and we
prove an existence and uniqueness results.

2. Problem statement

Let g, 1 C R2, be two bounded domains with a smooth boundary I'y =
0 and I'y = 09y = I'1;1 UT15. The boundary I’y of €7 is assumed to be
regular and is divided by two closed and disjoint parts I'11, I'12, here, Ty #
() and T'; # ), we consider a mathematical problem modeling the unsteady
flow of a rigid, viscoplastic and incompressible Bingham fluid in an elastic
domain in which Qg represents the domain occupied by the fluid and € is
the thickness of the elastic domain where gy, Q; C R2. Let 1 be the outward
normal to I'g oriented toward the outside of 2y, and the inside of ;. We
pose Q; = Q; x (0,T), (i =0,1), where T is a finite positive real. The density
of volume forces f act in @ = Q x (0,T) as fiq = (fO\QO,fl\Ql), in which
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Div (o) = (04j,;) denotes the divergence operator for stress tensor o = (o ;),
i,j = 1,2 e(u) = (g5 (w) : €ij (u) = 3 (usj +uj;) denotes the linearized
strain tensor in I'y x (0,7). We denote by Sy the space of symmetric tensors
on R?. We define the inner product and the Euclidean norm on R? and Ss,
respectively, by

u.v = u;v; for all u,v € R? and 0.7 = 04;7j; for all o,7 € Ss.

lu| = (wu)? for all u € R? and o = (0.0)7 for all o € Ss.
Here and below, the indices i and j run from 1 to 2 and the summation conven-
tion over repeated indices is used, u, g are the coefficients which characterize
the model of Bingham fluid and which represent, respectively: consistency
(viscosity) and the threshold of plasticity. We denote by &y the deviator of
o0 = (00i5) given by
traocg
9 0,59
where 6 = (J; ;) is the identity tensor and tra the trace operator.

The steady flow of transmission problem to Bingham fluid in the domain €;
is given by the following mechanical problem.

o0 = (Eﬁi,j) ) %i,j = 00i,j —

Problem 2.1. Find the velocity field u = (uy,us) : Qo x (0, T) — R?, the stress
ﬁeld og = (O’Oi)j)1<i <2 : QO X (O,T) — SQ and w = (’wl,’U)g) : Ql X (O,T) — R2
such that T

Du ou .
(2.1) = ((% + uVu) = Div (09) + fo on Qo,
2
(2.2) divu = Z D;u; =0 on Qo,
i=1
9w .
(2.3) o divoy + f1 on Q1
(2.4) 00 = 2pe (u) + 9 flel#0 0o,
lool < g if le(u)] =0
2
(25) 0145 = Z Ai,j7k7l.€k’l on Ql;

k=1

where A is the forth order Cauchy tensor and €*' is the strain tensor on Qi
under the boundary and transmission conditions

_ Ow

(2.6) U=

=w' inTy x (0,7T),

2
1 .
(2.7) o100 =5 (E_l U; COS (m)) x u; inTox (0,T),

(2.8) om=ginTy; x(0,T),
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(2.9) w=014nT12 x(0,T),

and the initial conditions

(2.10) u (0) = ug on Qy x (0,7T),

{ w (0) = wg on Q1 x (0,T),
w' (0) =w; on O x (0,T).

Here, the flow is given by the equation (2.1)-(2.3). Equation (2.4) and (2.5)
represents the constitutive law of Bingham fluid. (2.6)-(2.9) represents the ac-
quisition condition on the boundary T'11, T'1o and Tg. The equation (2.10) and
(2.11) represents the initial conditions.

(2.11)

For the rest of this paper, we will denote by ¢ or C possibly different positive
constants depending only on the data of the problem.

2.1. Preliminary

In this section, we present some material that we shall use to present our
results. Let

(2.12) Vi={v:ve (H"(Q))? divo=0onQ}.
Since I'g has nonempty interior and §2 is a regular domain, we denote by
Vo = {’U U E (Hl(Ql))z, v=01In Flg},

the closed subspace of (H'(£))? and (H'(€1))? with the norm equivalent to
the usual norm in (H'(Q))? and (H'())?, respectively. Also we define

VZ{(’Ul,UQ)EVlXVQI’Ul:’Ug iHFQ}.

Before presenting the main result of this paper, we introduce some basic nota-
tions that will be used in the rest of the paper

ag, : Vi x Vi = R, agq, (u,v)zQu/Q e (u)e (v)de,
0

Ly

2
b1 : Vi x Vi x Vi =R, by (u,v,w) = Z / ui%wjdx,
Qo i

i,j=1

2
Oou; Op;
aq, : Va x Vo = R, agl(u,cp):Z/Q Y sDjdx,
1

< ox; O0x;
7,7=1
and
J:Vi =R, J(v) :g/ le (v)| dx.
Qo
For studying problem (2.1), we introduce the new variable

_Ow

o= =22
YT o
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Thus, we have a
2.13 O =w = .
(2.13) W= s
Under hypotheses (2.6)-(2.11), then by multiplying the equation (2.1) by
(v—u) € HY () and (2.3) by (p — ®) € H(£;) integrating the results on
Qo and on g, respectively, using the closure of D(2) in V; (i = 1,2), and the

Green’s formula, it is easy to verify that the problem (2.1)-(2.5) is equivalent
to the following variational problem.

Lemma 2.2 (Variational Inequality). Assume that (2.6)-(2.11) hold. Then
(2.1)-(2.5) is equivalent to the following variational problem:

Pind (u,®) € L? (0, T, V;) N L> (O,T, L2 (90)2) x L <O,T; L2 (91)2> such
that
(w0 —u)q, + b1 (u,u,v — u) + ag, (u,v —u)
+9/[q, (e (@ —le@))dz+ [ (01— 00) (v—u)dl
+ (¥, 9~ ®)a, + (01,6 (p — @), + [}, 01m (¢ — @) dl
> (fo,v—u)a, + (fi,0 — oy, V(v,0) € Vi x Va,
v = inly,
u(0) = ug on Qy x (0,7T),
®(0) = w' (0) =w; on Q x (0,7),

u=®=9=w"inTyx(0,T).

(2.14)

2.2. Some results

In this subsection, let us first recall the following lemmas, which will be
constantly used in the sequel.

Lemma 2.3. (1) The bilinear function ag,(u,v) is a continuous and co-
ercive on Vi x V7,
(2) The bilinear function agq, (u,v) is a continuous and coercive on Vo X Va,
(3) The trilinear function by (u,v,w) is continuous on Vi x Vi x Vi,
(4) The function J is continuous on Vi.

Lemma 2.4. V (u,v,w) € V1 x V1 x Vi we have

101 11
(1) 161 (w, v, w)] < Clull* ul * lwl]* ]2 [|olly,
(2) br (u,v,w) = =by (u,w,v) + 377y Jp, wiwjvyn; dr.
Lemma 2.5 (see [7, Lemme 9.1.]). Ifv e H'(Q) (2 C R?), T the boundary of
Q, we have vr € L*(T) and

2 1
ol Lsry < C ol gy 0l Vo e H'(Q).

L2(Q)’
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2.2.1. Regularization. The following result is necessary to regularize the vari-
ational problem.

For all € > 0, let J. be a functional family of regularized function J defined
by

(2.15) Je (v) = 115/9 le (v)|** da,

therefore the following results hold.

Lemma 2.6. Hypothesis of reqularization (H);
(1) For alle > 0, the function v — J. (v) of V.— RU {400} is differential

onV.
(2) For allv e L?(0,T;V), we have
(2.16) / ) dt — / ))dt fore — 0.
0
(3) There exists a constant ¢ > 0 such that
(2.17) I|DJ. (v)||v/ <clvlly, , Vv e Vi

(4) If (ve,vl) = (v,v') weakly in L? (0,T,Vy) x L?(0,T,V]) we have

hm 1nf/ D (J: (ve) dt>/ D(J

which the space Vi is the topological dual of the space V;.
(5) For all e > 0, the function v — J. (v) is convex and differentiable on
V. Where DJ. (v) represents the Gateauz differential of J. (v).

Our object now is to regularize the problem (2.14), let’s replace in (2.14)
v by u+ A(v—wu) with A > 0, divided the first inequality of (2.14) by A and
make A — 0, we will get the following inequality

(' v —u)q, + b1 (u,u,v —u) + ag, (u,v —u)

+Jg%JW+AWXUD—JW)ﬁLJQg@@uMF

4%@W*¢hdﬂm@@*¢ﬁm+zi9@*¢MF

2 (anv_u)Qo—’_(flvgo_@)Ql? v('UaSD) € Vl X ‘/27

and we reproach the functional J by the functional family (J.),, as in (2.15),
then, problem (2.14) gotten the following approached elliptic inequality

(ul, v — ue)gy + b1 (Ue, Ue, ¥ — Ue) + agy (U, v — ue)

+ (DJ: (ue) ,v — ug)vl/xv1 + / (o1 —09) (v —u.)dl
o

+ (L0 — @), + (01,6(p—P))a, + [ g(p—P.)dl

T
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(218) Z (f07’l) - UE)QO + (flago - (I)E)QN V(U,QD) S Vl X VVQa

where (ue, ®.) is the approached solution of the regularized inequality (2.18).
Consequently, the steady-state flow of Bingham fluid can be also described by
the following system (2.19)-(2.23).

(ul,v — ue)a, + b1 (Ue, e, v — ue) + ag, (Ue, v — ue)

+ (DJe (ue),v — us)vl/xv1 + / (01 —00) (v —wue)dl
r

0

+(<I>’67<p7<1>6)91 +(O’1,€(g0—‘135))91 + g(wf@s)dr

INT]

(219) :(anv_uE)Qg—’—(flvsD_@E)le V(UNP)EVIXV%
(2.20) v=in Ig,
(2.21)  uc (0) = ugo on Qo x (0,7),
(2.22) ®.(0) = w' (0) = wy on Q; x (0,7T),

0
(2.23)  u.=d. = a—f = w in Ty x (0,T)
with the following assumptions
(224) fO\Qg € LZ(Oa Ta V1/)7 f1|Q1 € L2(07 T7 ‘/'2/))
(2.25) ue (0) = uge € (L? (R))*, wo € L*(0,T,Va) N L®(0,T, Va),

0. (0) = w' (0) = wy € (L (20))>.

3. Existence and uniqueness

In this section, we shall establish a local existence and uniqueness result of
the mathematical problem (2.1)-(2.11)

3.1. Existence

Our main goal in this section is, by basing on Faedo—Galerkin approxima-
tions and compactness argument, to show the local existence and uniqueness
of a weak solution

Theorem 3.1. Assume that the hypotheses (2.24)-(2.25) hold. Then, the vari-
ational problem (2.19)-(2.23) admits at least one solution (u, ®) for any finished
T, satisfies

we L20,T;Vy) N L™ (o,T, <L2 (90)2)) , o€ L2(0,T,V7),
& e L2(0,T; Vo) N L™ (O,T; (L2 (91)2)) L @ e L2(0,T,V}).

Proof. We construct approximations of the solutions (u,®) by the Faedo—
Galerkin method as follows. Let {yr}, <1<, and {zx};<x<,, be orthonormal
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bases of V; and Vs, respectively. For each € € (0,1) and k € N, according to
(2.19), we consider

Ume(t) =D Aemi(t)yr, = € Qo, t € (0,T),
k=1

Cpc(t) = > prem i (t) 2k, © € Qu, t € (0,T),

k=1
local solutions to the approximate perturbed problem

(Unpes Yk — Ume )0 +01 (Ume, Umes Y — Ume ) +a0 (Ume, Yk — Ume)

+ (DJe (Ume) , Yk = tme)y7 vy +/ (01 = 00) (Yk — Ume) dT’
I

[¢]

+ (s 26 — Prne ), + (01,6 (25 — (I)ms))ﬂl+/ g (2 — Pppe) dl’

Fll
(3.1) = (fo,yr — umE)QO + (f1, 21 — q)ma)ﬂw
Ume (0) = uoe = Y (10, Yk) Yk
k=1
Pine (0) = Po. = Z (w1, 21) 2k
k=1

Since (3.1) is a normal system of ordinary differential equations, then there exist
(Ume, Prme ), solutions to the problem (3.1). A solution (u, ®) to the problem
(2.19)-(2.23) will be obtained as the limit of (ume, Ppme) as m — oo and € — 0.
Therefore, uniform estimates with respect to m and € are needed. Indeed, from
the first and the second equations in (3.1), we have the approximate equations.

(u;‘ns7 v — ums)ﬂg +b (Umsv Ume, UV — Ums) + agq, (umsv v — ums)

+ (DJ: (ume) ,v — ums)vl,xv1 + / (01 — 00) (U — Upe) dT
r

0

(32) = (f()vv - uma)ﬂgv

Ume (0) = ups = Z (uo,v) v,

k=1
and
(s = Oy + (01,2 (0= Oy + [ 99 = o)l
T

(33) = (fh Y — ©m6)91;

Dppe (0) = Do = Y (w1, ) ¢,

k=1

which hold for all v € span {y1,y2,...,ym} and ¢ € span{z1,22,...,2m}.
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In the next estimate, we need to show that Vm € N, then ¢,,, = T. Thus, we
have to show some a priori uniform estimates with respect to m.

Estimate I. Taking v = 2up,. in (3.2), ¢ = 2®,,. in (3.3), and adding the
second equation with the first, we obtain

;(jt [[tme (¢ )||L2(Q )+b1(um6(t)aums(t)vUm(t))JraQo(ume(t)aums(t))

+ (DJe (ume(t)) ’ums(t))vl’xvl +/ (01 — 00) Ume (t)dT

To
1d

+5= H‘I)ME(t)HiZ(Q )+ (01,8 (Prc (1)), +/ 9P (t)dl
2dt ! I

(34) = (f(),ums( ))Qo (fla ( ))qu(umaq)m) S Vl,m X ‘/Z,m'
Using the Cauchy—Schwartz and Young’s inequalities, we have
|(fo(t), ume () a0l < cllfo(®)ll 2(qq) 1ume (Bl L2(qy)
< cllfo@)lL2(qy) ||ume( v,
C1
(3.5) <5 o200 + = ||ume( IS, »
[(F1(8), Prne (8)) ey | < €l f1()ll L2y ||<I>m5( M z2 00
< CHfl(t)HLQ(Ql ||‘1>me( Mlv,
(3.6) S ROy + 5 1w,
Note that
B7) lagy, (tme (), tme(6))] < €3 [tme (B)lly, [ume @)y, = cs [ume @7,
and
(3.8) b1 (Ume (£), Ume (1), Ume (B)) = 0, Yme € Vm.
According to the Hypothesis of regularization (H) (case (3)), we have
(DJe (ume(t)) 7um6(t))vl/><v1 <|[|DJ. (umE(t))HVl’ ”ume(t)”Vl
< C (&, 0) [[ume (), [lum (D)]ly,
(3.9) < C flume ()13, -

In the other hand, we have

/FO (o1 — 09) ums(t)df‘

\(01 — 00) Ume ()] dT

( (Z Uime (t) COS m)) X uime(t)> Upne (t)

dar
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< cZ( |Wime ()] dl“)l ( . |uim€(t)|3d1“>é ( 5 |um5(t)|3dI‘)é

< C”Ume( )||L3(Fo)’

and according to Lemma 2.5, we have

<C’||1)HH1 Q) lv ||7 , Yo e Vi € HY(Q).

HU‘FUHLJ(F()) L2(Qq )

Consequently, we deduce

/ (o1 —09) ume(t)dl'“
To
C [[tme )l 13 () IIuma(t)IlLa<r0> [wme (Ol 23 (o)
2 1
o) (e @l lime 1, )

2 1
X (Hume(t)Hip(Qo) Hums(t)ng(nm)

IN

IN

2
¢ (Iltme (Ol 371y Iume (DI

IN

2 1 3
(3:10) < ¢ (lum (@l lum @I, ) < ealume I,

Using Holder’s and Young’s inequalities, we have

(01,6 (Pme(t))) s |

/Qlals( (1)) dzx
/Ql (016 (B ()] d

c (/Q omz)% (/ﬂ |s<<1>m5<t>>2dx)%

< cllotll 2y lIE (Pme )l 12y )2x2
‘; (V(@me(t) + VT (Pre(1)))

IN

IN

N

< cllotllzzay
L2()2%2

clorllaey (IV @)l aoses + 97 @me(®)]| 2 22

2 2
B.11) < clloally, [[Pme(®lly, < s llovlly, [Pme(D)lly, ;

where

IN

L*(Q)*? = {0 = (04j) 1 0ij = 055 € L*(), i,j =1,2}.
By the same manner and according to the trace embedding theorem
Vo C H'(Q1)? < H?(I'y)? C L3(Iy)% € H ~2 (Ty)2.
Using the equation (2.8) and Cauchy-Schwartz inequality and

lowmll - ) < lovmllzz,y < ol -
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it results that

/ gq)me(t)dV‘ = / 01771(1)7%(75)‘
T INT]
< Cllowmll Lz [Pme(B)lly, » YPme(t) € Vom
2
< Cllovml ey [Pme BT, » YOme(t) € Vo
(3.12) < C6 ”01771”?{1(91) [ @me (¢ )Hv2 s Ve (t) € Vo

Substituting those estimates (3.5)-(3.12) into (3.4), integrating the result over
(0,t), after using (2.24)-(2.25), we find

t
[tme (720 + / (2C5 +2C + 204 [[tme () |ly;, — C1) l[ume ()13, ds

t
1013 0,y (205 01+ 20 loam sy =€) [ 1@melo)I, ds
(3.13) <C,

we can get a constant C = C(T') > 0, independent of the m, € and ¢ € [0, T],
such that
(3.14)

t t
1®me (t) sy + ltme () gy + / |®ome(8)]12, ds + / ltme(3)II%, ds < C.

Passing to the limit where m — oo, from (3.14), we conclude
(3.15) Ume is bounded in L?(0,T, V1) N L (0, T, (L*(Q0))?),
(3.16) ®,, is bounded in L*(0,T,Va) N L>=(0, T, (L*(21))?).

Estimate II. Let P}, and P2 be the orthogonal projects to V4 in V; ,, and
to Vo in V5 ,,, respectively, having the following proprieties

Vi = Vim, h—= Py (h)=3", (hs i), is
P} is bounded in £(V3, V1),

1 Ml ey < 1

and
Vo = Van, h— Pi(h) =331 (hy2i)q, i
P? is bounded in L(Va, Va),
2
127 M v 0y < 1
By the transposition arguments, we have

PL=Ph e LI V) and |[PL]| sy <1
P2 = P2 € LVEVH) and [|P2[ 0 ) <1

Because agq, (u,v) is a sesquilinear continuous function on V;, therefore there

exists an operator
Ag € LV, V)
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such that
aq, (u,v) = <A0(u)’v>vl’xvlv Y (u,v) € V1 x V4.
Multiplying the following two equations

(u/me (t)7 Yr)o, + b1 (umE(t>7 Ume (t)7 yk) + aq, (ume (t)7 Yk)

(3'17) + (DJe (ume(t))ayk)vl’xvl —/ ooryrdl’ = (fo,yk)ﬂ(),Vyk € Vim,
o
where v denotes the outside normal vector is oriented of {2y,

(. (8), 20)s + (00,2 (2))ens + / gzdD
T'is

(3.18) +/ ormzedl = (f1, 21)0,, V2K € Vom,
To

by yix and by zi, respectively, and summing over k = 1 to m, we get

P;L( ( ) +P1 (Ao(ume(t))) + Z (b1 (Ume (t), Ume (1), yr) Yr)

(3.19) + PL(DJ. (e (t Z/ oov (y)? dlo = Pl (fo(t)),
k=1"To

and

m
P2 <I>/ _|_Z o1, (2k) gzlzk+2/
k=1 r

(3.20) +Z / o1 (21)% dT = P2 (1)),

11

according (3.15), we have

(3.21) Ao (ume) € L*(0,T, V).
And from assumption (2.24), we have
(322)  PL(fo) € I3(0,T,I3(®)) and PA(f1) € L3(0,T, I*(®)).

According to the following corollary, for 2 C R?, we have

1
loll oy < C el ol Vo € H (@),

L2(Q)
then, for n = 2, of

Ume Temains in a bounded of L%(0,T,V;) N L>(0,T, (L*())?)
it comes

Ume € LY(0,T,(L2())%) = L*(0,T, (L?(€0))?), where ¢ = 4,

then, implies that
Ume € L*(0,T, (L*(Q0))?).
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And according to Lemma 2.4, we infer

m

(bl (ums (t), Ume (t)v yk) yk)

(H el o e gy ) Tmelyg Dol el

1 1 2
< ((C el mel ) Timel s Pl ol ) il

< Cllumelly, lumell 2 g 1umell 2 1umellv, ||ka§1(9 : ||yk||22<9 Myrllv,
2 2 3 3
<C ”“maHVl ||um6||L2(QO) Hyk||\2/1 Hyk||\2/1 Hkav1
2 2 2
<C ”umsHVl ||Um6||L2(QO) Hyk”vl
from where, it results
m
(3.23) D (b1 (e (8), ume (1), yx) y) € L0, T, V7).
k=1

According to estimates (3.12), we have

m

S [ oot < C R, < il LT, <,

/ o1€ (zr) zpdx| < Z/ |o1e (k) 21| dx
k=
m
Z/ o1 (2] |21] d
kf

Z/S |12 (28) dx) <Z|zkdx>

3
(3.24) < cllonlly, Iz, lzelly, < cllonlly, lzlly, -

Also

m
E 0—17 lek
k=

And according to (3.12), we have

/ g(zk)2d1“ =/ O1M 22k
1—‘11 1—‘11

2 4
(3.25) < Cllovmll o) 1zl -

< C||Ul771‘|iZ(F1) HZI%H?/Q

Finally, substituting those estimates into (3.19) and in (3.20), according to
(3.22) and (3.25), we get

Upe (8) = P (fo(£)) = P, (Ao (e (1)) = Y (01 (e (8), e (£), i) yx)
k=1
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(3.26) — Pr(DJ. (ume(t —l—Z/ oov (y)* dT,
and
@, (t) = Pr(f1(t) Z o1,€ (2k))0, 2k
=1

k
(3.27) —Z /F (z)%dT — Z / o (z1)?

Therefore, we deduce
(3.28) ul,. € L*(0,T;V]) and @/, < L*(0,T,Vy).

Consequently, we deduce that there exist subsequences () and (®,,c), which
we still denote by (ume) and (P, ), respectively, such that

(3.29) (ul, ., @) — (ul, L) weakly in L*(0,T, V1) x L*(0,T, Va),

and,
(3.30)
(e, Prne) = (ue, @) weak star in L>(0,T; (L%(Q0))?) x L>(0,T; (L*(41))?).

From (3.15), (3.16) and (3.29), it results
(3.31) (e, Pre) — (ue, ®.) weakly in L*(0,T, V1) x L*(0,T,V5),

it is known that the injection of H () in L%(Qp) (H'(21) in L3(£y)) is
compact. This permit us to assume that the extracted subsequence (e, Prme)
verify, in addition to relations (3.31)

(e, Pre) = (ue, @) strongly in L2(0, T, (L*(Q0))?) x L*(0,T, (L*(Q1))?)
(3.32) and a.e in ((0,7) x Q) x ((0,T) x 1),
from
Ume € L2(0,T,V1) N L>(0,T, (L*(20))?),
we deduce, that
Umei-Ume; 15 bounded in LQ(O, T, (LQ(QO))Q),
therefore, we can suppose that
(3.33) Umeillmej — Xi.; weakly in L2(0, T, (L*(Q0))?).
From (3.32), using [7, Lemme 1.3], we infer that
(3.34) Xij = Wielje-
Passing to the limit where m — oo, we have the following convergence:
(3.35) b1 (Ume , Umes Yi) — b1 (Ue, ue, yi) weakly in L2(0,T),

T T
(3.36) / b1 (Ume, Ume, Y )vdS — / b1 (ue, ue, yx )uds, Vo € LQ(O,T),
0 0
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( ) (ufmeayk)ﬁo - (ug-:?yk)ﬂo in D/(07T)7
(3.38) ag, (Ume, i) — agq, (ue, yx) in D'(0,T),
(3.39) (DJ: (tUme) , yk)v{xvl — (DJ¢ (ug) ’yk)vl’xvl in D'(0,7),
) (q);nsvzk)fh - ((1)27216)521 in D,(07T)‘
The estimates (3.35)-(3.40) are independent of e. Therefore, by the same prece-

dent argument used to obtain u. and ®. from u,,. and ®,., we can pass to the
limit when ¢ — 0 in ,,. and ®,,., obtaining u and ® such that

(3.41) b1 (ue, ue, yx) — b1 (u, u, yr) weakly in L2(0,T),
T T
(3.42) / b1 (e, te, yr )vds — / by (u, u, Yy )vds, Yo € L2(0, T),
0 0

(343) (u;, yk—)Qo — (u/, yk)QO in D’(O, T),

(3.44) ag, (e, yr) — ag, (u, yx) in D'(0,T),

(345) (DJE (UE) 7yk)v1’ x Vi — (DJE (U) 7yk)\/1’ x Vi iIl D/(()? T)a
(346) ((I)/av Zk)Ql — ((I’/, Zk)Ql in D/(O,T).

Substituting (3.41)-(3.46) into (2.19), it follows
(', yk)ae + b1 (w,u, yk) + agy (u,yx) + (DJ: (w) YR vy,

- / covyrdT + (', z1)0, + (01, (21))e,
To

—|—/ gzde+/ o1mzidl’
T o

(347) = (anyk‘)Qo + (flyzk)le v(ykazk) S ‘/1,'rn X ‘/2,m~
Finally, since the space Vi , X Va ,, is dense in Vi x V5, we obtain

(v —u)q, + b1 (u,u,v —u) + agq, (u,v —u)

+ (DJ. (u),v— u)vl/xv1 - / oov (v —u)dly

0
+ (2,9 — @), + (01,6 (9 — D))o,
+/ Q(W—q))dr‘i‘/ o1m (p — ®)dl
Fll 1—\0

(3.48) = (fo,v —uwa, + (f1,0 — oy, V(v,0) € Vi x Va.

This shows the existence of a solution to the problem (2.1)-(2.11).
Remains to verify the initial conditions. Using (3.29) and (3.31), we have

(Ume(0), @1 (0)) — (u(0), ®(0)) weakly in V] x V.

Hence, the results follows, and the proof of Theorem 3.1 is completed. (|
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3.2. Uniqueness

Theorem 3.2. Assume the hypotheses of Theorem 3.1 hold. Then the solution
(u, @) of the variational problem (P.V) is unique.

Proof. Let (u1,®1) and (ug,®2) be a two pair possible solution to problem
(2.19), verifying

ur € L2(0,T,V1) N L>=(0,T, (L*(Q0))?) for k= 1,2,

O, € L2(0,T,Va) N L®(0,T, (L2 (91)2)) for k= 1,2.

We have
(u),v —u1)q, + b1 (u1,u1,v —uy) + agq, (u1,v — uy)
+ (DJ:(u1),v— u1)ys vy /FO (61— 00) (v —uq)dl,
(‘I>'1,so—<1>)szlJr(ffnf(so—@))nlJr/F g9(p—®)drl
= (fo.0 = )y + (frrp = D)0, ¥ (0.0) € Vi x Vi
and

(uh, v — u2)a, + b1 (U2, u2, v — uz) + ag, (ug, v — us)

+ (DJ: (u2),v — u2)vl’xvl + / (o1 — 00) (v —ug) dlo,
To

<;w—@m+«mew—¢mh+/ g (p — ) dr

T
=(fo,v —u2)a, + (f1, — ®)a,,V(v,9) € Vi x Va,
with the conditions
up(x,0) = uz(z,0) = up on Qp,
‘I’l (O) = ‘I’Q (0) = w’ (0) = w; On Ql
from where;
Vi={v:ve (H (D)) dive=0o0n Q}
and
Vo={v:ve(HY(N))?*v=0inT1}
however,
V= {('Ul,’l]g) eVixVy:v =wvyin Fo}
Putting U = uy — ug, W = &1 — &y for all (vy,v2) € Vi X V3, then (U, W)
satisfy this system
(U, v —u)q, + aq, (U, —u) + by(ur,ur,v —u) — by (ug, uz, v — u)
+ (DJE (ul) U — u)Vl’le - (DJE (U’Q) U — U)Vl’xvl
(349) + (W'(t),cp - @)Ql =0, V(’U,QD) eVi x V.
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On the other hand, using the proprieties of the trilinear function by (u, u,v), we
have
b1 (ug, ug, v — u) = by (ug, us — ug + u1,v —u)
= by (ug, (ug — u1),v — u) + by (ug, ur,v — u),
therefore
by (w1, u1,v — u) — by (ug, ug, v — u)
= b1(ug,u1,v —u) — by (ug, ug — u1,v — u) — by (ug, us, v — u)
gives
b1 (ur,ur, v —u) — by (ug, ug,v — u) = by (U, u1,v — u) — by (ug, —U,v — u).
In the other hand, we have
b1 (ur,ur,v — u) — by (ug, ug, v — u)
(3.50) = b1 (U,u1,v —u) — by (U, U,v — ) + b1 (u1, U,v — u), Yv € V4.
Putting v —u = U, ¢ — ® = W, and substituting (3.50) into (3.49), we get
(U, U)q, + agq, (U,U) + b1 (U,u1,U) — by (U,U,U)
(3.51) +b1(uy, U, U) + (DJ: (U), U)Vl,le + (W' W)q, =0,
according to Lemma 2.4, we have

2
1
n(U,UU) =5 3 /F U; [U;|* midD and

4,j=1

2
1
bl(ul,U,U):* U11|Uj|27hd1—‘,
2 I'o

i,j=1

(3.52)

inserting (3.52) into (3.51), it follows

2
1
(U, U)ay +aa, (U,U) + by (U, u1,U) = 5 > /F U, |U;|? nidr
0

ij=1

2
1
- 9 Z /F U4 |Uj|2 ndl' + (DJ. (U), U)V{XV1
0

i,j=1
(3.53) + (W W), =0, V(UW) €V x Va.
Note that
(3.54) lac, (U(),U®)| = U@}, , YU € W,

and, according to (3.9),

(3.55) (DI (U (£) .U (O)yyxvy| < CIU@I, » YU € Vi
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Inserting (3.54) and (3.55) into (3.53), we have
1d 2 2 2 2
37 WOy, + IV, + U@y, + 2% W@y,
< — by (U,uy, U Z/ U; |U;|? n;dD — Z/ wy; |U;|* msdld

2]1 ’le

IN

by (U, U] + Z/ U 0, sl

1,5=1

(3.56) +7 Z/ w |U;* midD|, ¥ (U, W) € Vi x Va.
1,j=1
Therefore,

2 2 2 2
5 3 IO, + 1@, +CIU@IE, + 55 WO,

< by (U, uy, U |+f Z/ U, |U;|* idl

i,j=1

(3.57) +f Z/ uy; |U;)? midD|, ¥ (U, W) € Vi x Va.

i,j=1

According to Lemma 2.3, we have

b1 (U (t), ur (£) ,U()] < CLIUONFNT @2 00) 1T Ol 1T G172 00 11 )]y,
(3.58) < GolUDI[5, [ (B)lly, » YU, w1 € Vi

According to Lemma 2.5 and Holder inequality, the following estimates hold

(3.59) Z / U U3 2 T | < CIU[S sy < CIIUIE, , VU € Vi;
2] 1

Z / wis 03P 1l < C ol ooy 10 ooy 100 5o )

1,j=1
(3.60) < Cllutlly, 1UNF, s Yur, U € V4.

Substituting all above estimates into (3.56), and integrate over (0,¢) to obtain
2 2
U@y, + W @)y,

< [ (0= calu@ly, + U G)l) 1061, ds
0

< [(C=alm@ly, +CIv ) (I, + W EIE,) ds
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! 2 2
(3:61) < max (€= Colln(®ll, +CIU @) [ (W1 +IWEIE,) ds
Using Gronwall’s lemma, we get from (3.61) that

T, +IW Ol <o,
which implies that
(362) (ul, ‘1)1) = (UQ, (1)2) .

Hence, the uniqueness. O

We can now state our result of convergence:

3.3. Convergence

Problem 3.3 (P.). Let us suppose that the assumptions (2.24), (2.25) hold.
Let (ue, ®.) be a solution to the following variational inequality problem

(’UJIE,U - UE)QO + b1 (usausav - U€) + agq, (UE,U - uE)
+9 Jo, (le ()] = [e (ue)]) da + (2L, 0 — Pe)a, + (01,2 (¢ — Te))a,
+ Jp, (01 =00) (v —ue)dl + [ g(p — ®c)dl
(3.63) > (fo,v —uc)o, + (f1.0 — Pe)a,, V (v, 0) € Vi X Vs,
’ v = in Iy,
ue (0) = up on Qo x (0,T),
o, (0) =w' (0)—w1 on Q1 x (0,T),
U = P, = ——wanOX(OT)

Then we have the following theorem:

Theorem 3.4. Assume that the hypotheses (2.24)-(2.25) hold for e — 0. Then
the solution (ue, @) of problem (3.63) converges to the solution (u,®) of prob-
lem (2.14).

Proof. Let (uc, ®.) be a solution of problem (3.63), for v € V; and ¢ € Vs,
defined

IS A A S
_ Ue ),V uEVleqL r, (01— UV — Uge
X“/ (@ — ), + (al, (o~ B.))a,
+f1“11 g(p— @) dl = (fo,v —uec)a, — (f1, 9 — Po)o,

It is easy to see that

dt.

(1) Ve DJ, (ue) is monotony, and consequently X, > 0 for all € > 0.
(2) lirr(l) inf fOT aq, (Ue, v — ue) dt > foT aq, (u,v —u)dt, Vv € Vi.
e—

(3) lim (DJ: (ue) ;0 = ue)yr oy, = 9 Jg, (I€ ()] = e (w)]) dz, Vv € V1.
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So, X. — X as ¢ — 0, where
(W' v —u)q, + b1 (u,u,v —u) + agq, (u,v — u)
X = /T +9 Jq, (I ()] = [e (W)]) dz + (@', — D)q,
o | tlonelp =)o, + Jp, (01— 00) (v —u)dl
+ Jr,, 9 = @)dl = (fo,v —u)a, — (f1,0 — P)a,
Thus (u, ®) is the solution of problem (2.14).

Now, let (u, ®) be a solution of problem (2.14), and (u., ®.) be a solution of
problem (3.63), if we chooses (v = %, o= @527'“1’) as a function test in (2.14)
and in (3.63), respectively, adding them up we obtain

dt.

— ((ue —u) yue —u)q, — (b1 (Ue, ue, ue — u) — by (u,u,us — u))
— ag, (ue — u,ue —u) + ngQD (le (2=F2)| = le (u)]) da
_ ((DJE (ue) , ue — u)v;xvl)
— (@ = @), @. = D)o, —2(01, (P — ®)), 20,
(3.64) Y (u, @), (ue, D) € V1 X Va,

using, the previous calculation, and the fact that

QQ/QO <a<“2+“)‘ —e(u)|> dsz(J (“;“) —J(u)), Ve, u € Vi,

and the proprieties of trilinear function b; (see Lemma 2.4), integrating (3.64)
over (0,t), we get

2 2
3 (e = u) )1y, = 5 | (uoe — uo)lly,

(D () e = )y, ) = 2 (0 (2552) = T (w)
+ 5 (Ca+ Cs || (ue = u) ()lly, + Clallue (3)ly, +1) [|(ue —u) ()]}, ds
+ 3 (@ — @) (D)7, — 5 [1(®o- — )3,
+2¢6 [ o117, 1(@=(s) = ()1}, ds <0, ¥ (u, @), (ue, ®c) € Vi x Va.
Therefore
(ue = u) @)IF, + 1@ — @) B)I7,
< [l(woe = o)1}, + (@0 = @0)IF, +2 (DI (ue) e =)y )
—2(.](%) —J(u))7 Y (u, @), (ue, ) € V1 x Vo,

since u (0) = ug and u. (0) = up on L%(Qp), ue € V4 and that ® (0) = w; and
®. (0) = w;y on (L2 (Ql))z, Dy € V5, it result

(ue —u) (B, + (@ — @) ()],
<2 ((DJE (ue), ue — u)VI/le) —2(J (=) = T (w),
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V(u,‘l)) ) (UE,‘I)5> e Vi x Vs,
passing to the limit when € — 0 in the last inequality, yields
2 2
[[(ue —w) @)y, + [(2 — @) (@)]ly, <0.

From where, the solution (u.,®.) of problem (3.63) converges to the solution

(u,

®) of problem (2.14). O
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