DOI QR코드

DOI QR Code

Effect of Ball Milling Conditions on the Microstructure and Dehydrogenation Behavior of TiH2 Powder

볼 밀링 조건이 TiH2 분말의 미세조직과 탈수소화 거동에 미치는 영향

  • Ji Young Kim (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Eui Seon Lee (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Ji Won Choi (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Youngmin Kim (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Sung-Tag Oh (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 김지영 (서울과학기술대학교 신소재공학과) ;
  • 이의선 (서울과학기술대학교 신소재공학과) ;
  • 최지원 (서울과학기술대학교 신소재공학과) ;
  • 김영민 (서울과학기술대학교 신소재공학과) ;
  • 오승탁 (서울과학기술대학교 신소재공학과)
  • Received : 2024.02.19
  • Accepted : 2024.03.06
  • Published : 2024.04.28

Abstract

This study investigated the effects of revolution speed and ball size in planetary milling on the microstructure and dehydrogenation behavior of TiH2 powder. The particle size analysis showed that the large particles present in the raw powder were effectively refined as the revolution speed increased, and when milled at 500 rpm, the median particle size was 1.47 ㎛. Milling with a mixture of balls of two or three sizes was more effective in refining the raw powder than milling with balls of a single size. A mixture of 3 mm and 5 mm diameter balls was the optimal condition for particle refinement, and the measured median particle size was 0.71 ㎛. The dependence of particle size on revolution speed and ball size was explained by changes in input energy and the number of contact points of the balls. In the milled powder, the endothermic peak measured using differential thermal analysis was observed at a relatively low temperature. This finding was interpreted as the activation of a dehydrogenation reaction, mainly due to the increase in the specific surface area and the concentration of lattice defects.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(PM 연구실 회복 지원 사업).

References

  1. L. Kang and C. Yang: Adv. Eng. Mater., 21 (2019) 1801359. 
  2. M. Kaur and K. Singh: Mater. Sci. Eng. C, 102 (2019) 844. 
  3. Z. Z. Fang, J. D. Paramore, P. Sun, K. S. R. Chandran, Y. Zhang, Y. Xia, F. Cao, M. Koopman and M. Free: Int. Mater. Rev., 63 (2018) 407. 
  4. H. D. Nguyen, A. Pramanik, A. K. Basak, Y. Dong, C. Prakash, S. Debnath, S. Shankar, I. S. Jawahir, S. Dixit and D. Buddhi: J. Mater. Res. Technol., 18 (2022) 4641. 
  5. Z. Z. Fang, P. Sun and H. Wang: Adv. Eng. Mater., 14 (2012) 383. 
  6. B. Sharma, S. K. Vajpai and K. Ameyama: J. Alloys Compd., 656 (2016) 978. 
  7. B. Sharma, Y. Shogo, M. Kawabata, S. K. Vajpai and K. Ameyama: Mater. Manuf. Process., 34 (2019) 1745. 
  8. V. Bhosle, E. G. Baburaj, M. Miranova and K. Salama: Mater. Eng. A, 356 (2003) 190. 
  9. J.-H. Park, D.-W. Lee and J. Kim: J. Korean Powder Metall. Inst., 17 (2010) 385. 
  10. C. Suryanarayana: Prog. Mater. Sci., 46 (2001) 1. 
  11. H. Ashrafizadeh and M. Ashrafizaadeh: Adv. Powder Technol., 23 (2012) 708. 
  12. U. Foerter-Barth and U. Teipel: Dev. Miner. Process., 13 (2000) C1-1.  https://doi.org/10.1016/S0167-4528(00)80003-4
  13. L. G. Austin, K. Shoji and P. T. Luckie: Powder Technol., 14 (1976) 71. 
  14. H. Shin, S. Lee, H. S. Jung and J.-B. Kim: Ceram. Int., 39 (2013) 8963. 
  15. S.-M. Hong, J.-J. Park, E.-K. Park, K.-Y. Kim, J.-G. Lee, M.- K. Lee, C.-K. Rhee and J. K. Lee: Powder Technol., 274 (2015) 393.  https://doi.org/10.1016/j.powtec.2015.01.047
  16. V. Bhosle, E.G. Baburaj, M. Miranova and K. Salama: Mater. Sci. Eng. A, 356 (2003) 190. 
  17. K.G. Prashanth: Mater. Manuf. Process., 25 (2010) 974.