광에너지를 활용한 그린 암모니아 생산 핵심기술 및 연구동향

  • 김다솜 (한양대학교 화학공학과) ;
  • 장윤정 (한양대학교 화학공학과)
  • 발행 : 2024.04.30

초록

키워드

참고문헌

  1. J.G. Chen, R.M. Crooks, L.C. Seefeldt et al., Beyond fossil fuel-driven nitrogen transformations. Science 360(6391), eaar6611 (2018)
  2. Y.J. Jang, K.S. Choi, Enabling electrochemical N2 reduction to NH3 in the low overpotential region using non-noble metal Bi electrodes via surface composition modification. J. Mater. Chem. A 8(27), 13842 (2020)
  3. J. John, D.K. Lee, U. Sim, Photocatalytic and electrocatalytic approaches towards atmospheric nitrogen reduction to ammonia under ambient conditions. Nano Converg. 6(1), 15 (2019)
  4. K. Ithisuphalap, H. Zhang, L. Guo, Q. Yang, H. Yang, G. Wu, Photocatalysis and photoelectrocatalysis methods of nitrogen reduction for sustainable ammonia synthesis. Small Methods 3(6), 1800352 (2019)
  5. Y.J. Jang, A.E. Lindberg, M.A. Lumley, K.S. Choi, Photoelectrochemical nitrogen reduction to ammonia on cupric and cuprous oxide photocathodes. ACS Energy Lett. 5(6), 1834 (2020)
  6. G. N. Schrauzer, T. D. Guth, Photolysis of water and photoreduction of nitrogen on titanium dioxide. J. Am. Chem. Soc. 99(22), 7189 (1977)
  7. G. Zhang, X. Yang, C. He, P. Zhang, H. Mi, Constructing a tunable defect structure in TiO2 for photocatalytic nitrogen fixation. J. Mater. Chem. A 8(1), 334 (2020)
  8. E. Endoh, J.K. Leland, A.J. Bard, Heterogeneous photoreduction of nitrogen to ammonia on tungsten oxide. J. Phys. Chem 90(23), 6223 (1986)
  9. Q.S. Li, K. Domen, S. Naito, T. Onishi, K. Tamaru, Photocatalytic synthesis and photodecomposition of ammonia over SrTiO3 and BaTiO3 based catalysts. Chem. Lett. 12(3), 321 (1983)
  10. Y. Zhao, S. Zhou, J. Zhao, Y. Du, S.X. Dou, Control of photocarrier separation and recombination at bismuth oxyhalide interface for nitrogen fixation. J. Phys. Chem. Lett. 11(21), 9304 (2020)
  11. L. Yu, Z. Mo, X. Zhu, J. Deng, F. Xu, Y. Song, Y. She, H. Li, and H. Xu, Construction of 2D/2D Z-scheme MnO2-x/g-C3N4 photocatalyst for efficient nitrogen fixation to ammonia, Green Energy Environ. 6(4), 538 (2020)
  12. H. Gal, G. Alan, F. Frank A. et al., Potential economic feasibility of direct electrochemical nitrogen reduction as a route to ammonia, ACS Sustainable Chem. Eng. 8(24), 8938 (2020)
  13. M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions (National Association of Corrosion Engineers, Houston, Tex., 1974)
  14. L. Zhang, H.H. Mohamed, R. Dillert, D. Bahnemann, Kinetics and mechanisms of charge transfer processes in photocatalytic systems: a review. J. Photochem. Photobiol. C-Photochem. Rev. 13(4), 263 (2012)
  15. M.A. Lumley, A. Radmilovic, Y.J. Jang, A.E. Lindberg, K.S. Choi, Perspectives on the development of oxide-based photocathodes for solar fuel production. J. Am. Chem. Soc. 141(46), 18358 (2019)
  16. C. Lee, H. Kim, Y.J. Jang, Three phase boundary engineering using hydrophilic-hydrophobic poly(Nisopropylacrylamide) with oxygen-vacant TiO2 photocatalysts for photocatalytic N2 reduction. ACS Appl. Energy Mater. 5(9), 11018 (2022)
  17. F. Wu, Y. Yu, H. Yang et al., Simultaneous enhancement of charge separation and hole transportation in a TiO2-SrTiO3 core-shell nanowire photoelectrochemical system. Adv. Mater. 29(28), 1701432 (2017)
  18. B. Huang, Y. Liu, Q. Pang, X. Zhang, H. Wang, P.K. Shen, Boosting the photocatalytic activity of mesoporous SrTiO3 for nitrogen fixation through multiple defects and strain engineering. J. Mater. Chem. A 8(42), 22251 (2020)
  19. Z. Ying, S. Chen, S. Zhang, T. Peng, R. Li, Efficiently enhanced N2 photofixation performance of sea-urchin-like W18O49 microspheres with Mn-doping. Appl. Catal. B-Environ. 254, 351 (2019)
  20. P. Huang, W. Liu, Z. He et al., Single atom accelerates ammonia photosynthesis. Sci. China-Chem. 61(9), 1187 (2018)
  21. S. Hu, X. Chen, Q. Li, Y. Zhao, W. Mao, Effect of sulfur vacancies on the nitrogen photofixation performance of ternary metal sulfide photocatalysts. Catal. Sci. Technol. 6(15), 5884 (2016)
  22. D.S. Bhachu, S.J.A. Moniz, S. Sathasivam et al., Bismuth oxyhalides: synthesis, structure and photo-electrochemical activity. Chem. Sci. 7(8), 4832 (2016)
  23. J. Li, H. Li, G. Zhan, L. Zhang, Solar water splitting and nitrogen fixation with layered bismuth oxyhalides. Accounts Chem. Res. 50(1), 112 (2017)
  24. W.L. Huang, Electronic structures and optical properties of BiOX (X = F, Cl, Br, I) via DFT calculations. J. Comput. Chem. 30(12), 1882 (2009)
  25. S. Liu, S. Wang, Y. Jiang, Z. Zhao, G. Jiang, Z. Sun, Synthesis of Fe2O3 loaded porous g-C3N4 photocatalyst for photocatalytic reduction of dinitrogen to ammonia. Chem. Eng. J. 373, 572 (2019)
  26. R. Liu, Z. Chen, Y. Yao, Y. Li, W.A. Cheema, D. Wang, S. Zhu, Recent advancements in g-C3N4-based photocatalysts for photocatalytic CO2 reduction: a mini review. RSC Adv. 10(49), 29408 (2020)
  27. R. Shi, Y. Zhao, G.I.N. Waterhouse, S. Zhang, T. Zhang, Defect engineering in photocatalytic nitrogen fixation. ACS Catal. 9(11), 9739 (2019)
  28. Y.J. Jang, Y.B. Park, H.E. Kim, Y.H. Choi, S.H. Choi, J.S. Lee, Oxygen-intercalated CuFeO2 photocathode fabricated by hybrid microwave annealing for efficient solar hydrogen production. Chem. Mat. 28(17), 6054 (2016)
  29. J. Li, D. Wang, R. Guan, Y. Zhang, Z. Zhao, H. Zhai, Z. Sun, Vacancy-enabled mesoporous TiO2 modulated by nickel doping with enhanced photocatalytic nitrogen fixation performance. ACS Sustain. Chem. Eng. 8(49), 18258 (2020)
  30. Y. Zhao, Y. Zhao, R. Shi, B. Wang, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, T. Zhang, Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv. Mater. 31(16), 1806482 (2019)
  31. M. Li, H. Huang, J. Low, C. Gao, R. Long, Y. Xiong, Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction. Small Methods 3(6), 1800388 (2019)
  32. X. Xue, R. Chen, H. Chen et al., Oxygen vacancy engineering promoted photocatalytic ammonia synthesis on ultrathin two-dimensional bismuth oxybromide nanosheets. Nano Lett. 18(11), 7372 (2018)
  33. G. Dong, W. Ho, C. Wang, Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies. J. Mater. Chem. A 3(46), 23435 (2015)
  34. H. Lee, J.-H. Lee, Y. Lee, E.-B. Cho, Y.J. Jang, Boosting solar-driven N2 to NH3 conversion using defect-engineered TiO2/CuO heterojunction photocatalyst, Applied Surface Science, 620, 156812 (2023)
  35. G. Zhang, X. Yuan, B. Xie, Y. Meng, Z. Ni, S. Xia, S vacancies act as a bridge to promote electron injection from Z-scheme heterojunction to nitrogen molecule for photocatalytic ammonia synthesis, Chemical Engineering Journal, 433(3), 133670 (2022)
  36. S. Liu, Y. Wang, S. Wang, M. You, S. Hong, T.-S. Wu, Y.-L. Soo, Z. Zhao, G. Jiang, B. Wang, Z. Sun, Photocatalytic fixation of nitrogen to ammonia by single Ru atom decorated TiO2 nanosheets. ACS Sustainable Chem. Eng. 7(7), 6813 (2019)
  37. X. Xue, R. Chen, C. Yan, Y. Hu, W. Zhang, S. Yang, L. Ma, G. Zhu, Z. Jin, Efficient photocatalytic nitrogen fixation under ambient conditions enabled by the heterojunctions of n-type Bi2MoO6 and oxygen-vacancy-rich p-type BiOBr. Nanoscale 11(21), 10439 (2019) https://doi.org/10.1039/C9NR02279A
  38. S. Choe, S.M. Kim, Y. Lee et al. Rational design of photocatalysts for ammonia production from water and nitrogen gas. Nano Converg. 8(22), (2021)
  39. S. Liu, M. Wang, H. Ji, L. Zhang, J. Ni, N. Li, T. Qian, C. Yan, J. Lu, Solvent-in-Gas System for Promoted Photocatalytic Ammonia Synthesis on Porous Framework Materials. Adv. Mater. 35(14), 2211730 (2023)
  40. Guan, Y., Wen, H., Cui, K. et al. Light-driven ammonia synthesis under mild conditions using lithium hydride. Nat. Chem. 16, 373-379 (2024) https://doi.org/10.1038/s41557-023-01395-8