References
- Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 131, 6050-6051 (2009). https://doi.org/10.1021/ja809598r
- https://www.nrel.gov/pv/cell-efficiency.html
- Ehrler, B. et al. Photovoltaics Reaching for the Shockley-Queisser Limit. ACS Energy Letters 5, 3029-3033 (2020). https://doi.org/10.1021/acsenergylett.0c01790
- Caprioglio, P. et al. On the Relation between the Open-Circuit Voltage and Quasi-Fermi Level Splitting in Efficient Perovskite Solar Cells. Advanced Energy Materials 9, 1901631 (2019). https://doi.org/10.1002/aenm.201901631
- Numata, Y., Sanehira, Y. & Miyasaka, T. Drastic Change of Surface Morphology of Cesium-Formamidinium Perovskite Solar Cells by Antisolvent Processing. ACS Applied Energy Materials 4, 1069-1077 (2021). https://doi.org/10.1021/acsaem.0c01717
- Taylor, A. D. et al. A general approach to high-efficiency perovskite solar cells by any antisolvent. Nature Communications 12, 1878 (2021). https://doi.org/10.1038/s41467-021-22049-8
- Zheng, H. et al. The multiple effects of polyaniline additive to improve the efficiency and stability of perovskite solar cells. Journal of Materials Chemistry C 7, 4441-4448 (2019). https://doi.org/10.1039/C8TC05975F
- Kim, M. et al. Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells. Joule 3, 2179-2192 (2019). https://doi.org/10.1016/j.joule.2019.06.014
- Zhuang, J. et al. Rubidium Fluoride Modified SnO2 for Planar n-i-p Perovskite Solar Cells. Advanced Functional Materials 31, 2010385 (2021). https://doi.org/10.1002/adfm.202010385
- Wang, C. et al. High-effective SnO2-based perovskite solar cells by multifunctional molecular additive engineering. Journal of Alloys and Compounds 886, 161352 (2021). https://doi.org/10.1016/j.jallcom.2021.161352
- Wang, P. et al. Gradient Energy Alignment Engineering for Planar Perovskite Solar Cells with Efficiency Over 23%. Advanced Materials 32, 1905766 (2020). https://doi.org/10.1002/adma.201905766
- Zhang, H. et al. Multifunctional Crosslinking-Enabled Strain-Regulating Crystallization for Stable, Efficient α-FAPbI3-Based Perovskite Solar Cells. Advanced Materials 33, 2008487 (2021). https://doi.org/10.1002/adma.202008487
- Jeon, N. J. et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nature Energy 3, 682-689 (2018). https://doi.org/10.1038/s41560-018-0200-6
- Pham, N. D. et al. Alkaline-earth bis(trifluoromethanesulfonimide) additives for efficient and stable perovskite solar cells. Nano Energy 69, 104412 (2020). https://doi.org/10.1016/j.nanoen.2019.104412
- Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nature Photonics 13, 460-466 (2019). https://doi.org/10.1038/s41566-019-0398-2
- Hu, M. et al. Solvent Engineering of a Dopant-Free Spiro-OMeTAD Hole-Transport Layer for Centimeter-Scale Perovskite Solar Cells with High Efficiency and Thermal Stability. ACS Applied Materials & Interfaces 12, 8260-8270 (2020). https://doi.org/10.1021/acsami.9b21177
- Yu, B. et al. Efficient (>20 %) and Stable All-Inorganic Cesium Lead Triiodide Solar Cell Enabled by Thiocyanate Molten Salts. Angewandte Chemie International Edition 60, 13436-13443 (2021). https://doi.org/10.1002/anie.202102466
- Liang, J. et al. CsPb0.9Sn0.1IBr2 Based All-Inorganic Perovskite Solar Cells with Exceptional Efficiency and Stability. Journal of the American Chemical Society 139, 14009-14012 (2017). https://doi.org/10.1021/jacs.7b07949
- Yin, X. et al. Critical roles of potassium in charge-carrier balance and diffusion induced defect passivation for efficient inverted perovskite solar cells. Journal of Materials Chemistry A 7, 5666-5676 (2019). https://doi.org/10.1039/C8TA11782A
- He, J. et al. Surface chelation of cesium halide perovskite by dithiocarbamate for efficient and stable solar cells. Nature Communications 11, 4237 (2020). https://doi.org/10.1038/s41467-020-18015-5
- Yan, L. et al. Interface Engineering for All-Inorganic CsPbI2Br Perovskite Solar Cells with Efficiency over 14%. Advanced Materials 30, 1802509 (2018). https://doi.org/10.1002/adma.201802509
- Li, M.-H. et al. Electrical Loss Management by Molecularly Manipulating Dopant-free Poly(3-hexylthiophene) towards 16.93 % CsPbI2Br Solar Cells. Angewandte Chemie International Edition 60, 16388-16393 (2021). https://doi.org/10.1002/anie.202105176
- Tian, J. et al. Inorganic Halide Perovskite Solar Cells: Progress and Challenges. Advanced Energy Materials 10, 2000183 (2020). https://doi.org/10.1002/aenm.202000183
- Lin, R. et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature 603, 73-78 (2022). https://doi.org/10.1038/s41586-021-04372-8
- Chen, H. et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 613, 676-681 (2023). https://doi.org/10.1038/s41586-022-05541-z
- Guo, Z., Jena, A. K., Kim, G. M. & Miyasaka, T. The high open-circuit voltage of perovskite solar cells: a review. Energy & Environmental Science 15, 3171-3222 (2022). https://doi.org/10.1039/D2EE00663D