신재생에너지 기반 그린수소 기술 (전기화학적 생산)

  • 조혜진 (한국화학연구원 수소에너지연구센터) ;
  • 김성준 (한국화학연구원 수소에너지연구센터) ;
  • 이장용 (한국화학연구원 수소에너지연구센터)
  • Published : 2024.04.30

Abstract

Keywords

References

  1. J. Skea, P. Shukla, S. Kilkis (2023), Climate Change 2022: Mitigation of Climate Change, Cambridge University Press, Cambridge. 
  2. IRENA (2022), Geopolitics of the Energy Transformation: The Hydrogen Factor, International Renewable Energy Agency, Abu Dhabi. 
  3. F. Dawood et al. Hydrogen production for energy: An overview, Int. J. Hydrogen Energy. 2020, 45, 3847-3869.  https://doi.org/10.1016/j.ijhydene.2019.12.059
  4. P.-A. Le et al. The current status of hydrogen energy: an overview, RSC Adv. 2023, 13, 28262-28287. 
  5. J. Kim et al. Research Trend in Electrocatalysts for Anion Exchange Membrane Water Electrolysis, J. Korean Electrochem. Soc., 2022, 25, 69-80. 
  6. IRENA (2020), Reaching zero with renewables: Eliminating CO2 emissions from industry and transport in line with the 1.5℃ climate goal, International Renewable Energy Agency, Abu Dhabi. 
  7. J. H. Lee et al. Research Trend and Prospect of Membranes for Water Electrolysis, KIC News, 2021, 24, 1-21. 
  8. D. Li et al. Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers, Nat. Energy, 2020, 5, 378-385.  https://doi.org/10.1038/s41560-020-0577-x
  9. M. David et al. Advances in alkaline water electrolyzers: A review, J. Energy Storage, 2019, 23, 392-403  https://doi.org/10.1016/j.est.2019.03.001
  10. H.-S. Cho et al. Low-temperature Alkaline Water Electrolysis, KIC News, 2018, 21, 23-40. 
  11. M. T. de Groot et al. Ohmic resistance in zero gap alkaline electrolysis with a Zirfon diaphragm, Electrochim. Acta, 2021, 369, 137684. 
  12. Ph. Vermeiren et al. Zirfon® : A new separator for Ni-H2 batteries and alkaline fuel cells, Int. J. Hydrogen Energy. 1996, 21, 679-684.  https://doi.org/10.1016/0360-3199(95)00132-8
  13. Ph. Vermeiren et al. Evaluation of the Zirfon® separator for use in alkaline water electrolysis and Ni-H2 batteries, Int. J. Hydrogen Energy. 1998, 23, 321-324.  https://doi.org/10.1016/S0360-3199(97)00069-4
  14. H. I. Lee et al. Advanced Zirfon-type porous separator for a high-rate alkaline electrolyser operating in a dynamic mode, J. Membr. Sci. 2020, 616, 118541. 
  15. J. Rodriguez, et al. Simple and Precise Approach for Determination of Ohmic Contribution of Diaphragms in Alkaline Water Electrolysis, Membranes 2019, 9, 129. 
  16. H. I. Lee et al. The synthesis of a Zirfon-type porous separator with reduced gas crossover for alkaline electrolyzer, Int. J. Energy Res. 2019, 44, 1875-1885.  https://doi.org/10.1002/er.5038
  17. J. W. Lee et al. Cerium Oxide-Polysulfone Composite Separator for an Advanced Alkaline Electrolyzer, Polymers 2020, 12, 2821. 
  18. M. R. Kraglund et al. Ion-solvating membranes as a new approach towards high rate alkaline electrolyzers, Energy Environ. Sci. 2019, 12, 3313-3318.  https://doi.org/10.1039/C9EE00832B
  19. 조형규, 김형준, 알카라인 수전해용 이온 용매화(ionsolvating) 전해질막, News & Information for chemical engineers, 2023, 41, 333-337. 
  20. X. Hu et al. Sulfonate-functionalized polybenzimidazole as ion-solvating membrane toward highperformance alkaline water electrolysis, J. Membr. Sci. 2022, 663, 121005. 
  21. J. C. Ehlers, et al. Affordable Green Hydrogen from Alkaline Water Electrolysis: Key Research Needs from an Industrial Perspective, ACS Energy Lett. 2023, 8, 1502-1509. 
  22. A. Makhsoos et al. A perspective on increasing the efficiency of proton exchange membrane water electrolyzers - a review, Int. J. Hydrogen Energy. 2023, 48, 15341-15370. 
  23. K. S. Im et al. Research and Development Trend of Electrolyte Membrane Applicable to Water Electrolysis System, Appl. Chem. Eng. 2019, 30, 389-398. 
  24. S. S. Kumar et al. Recent advances in hydrogen production through proton exchange membrane water electrolysis - a review, Sustainable Energy Fuels, 2023, 7, 3560-3583. 
  25. Y. Chen et al. Key Components and Design Strategy for a Proton Exchange Membrane Water Electrolyzer, Small Structures, 2022, 4, 2200130. 
  26. M. N. I. Salehmin et al. High-pressure PEM water electrolyser: A review on challenges and mitigation strategies towards green and low-cost hydrogen production, Energy Conversion and Management 2022, 268, 115985. 
  27. M. MMckl al. Proton exchange membrane water electrolysis at high current densities: Investigation of thermal limitations, Int. J. Hydrogen Energy. 2020, 45, 1417-1428.  https://doi.org/10.1016/j.ijhydene.2019.11.144
  28. C. J. Lee et al. Controlling hydrophilic channel alignment of perfluorinated sulfonic acid membranes via biaxial drawing for high performance and durable polymer electrolyte membrane water electrolysis, J. Power Sources 2022, 518, 230772. 
  29. T. Kim et al. Monolayer Hexagonal Boron Nitride Nanosheets as Proton-Conductive Gas Barriers for Polymer Electrolyte Membrane Water Electrolysis, ACS Appl. Nano Mater. 2021, 4, 9104-9112.  https://doi.org/10.1021/acsanm.1c01691
  30. D. W. Shin et al. Hydrocarbon-Based Polymer Electrolyte Membranes: Importance of Morphology on Ion Transport and Membrane Stability, Chem. Rev. 2017, 117, 4759-4805.  https://doi.org/10.1021/acs.chemrev.6b00586
  31. J. E. Park et al. High-performance proton-exchange membrane water electrolysis using a sulfonated poly (arylene ether sulfone) membrane and ionomer, J. Membr. Sci. 2021, 620, 118871. 
  32. R.-T. Liu et al. Recent advances in proton exchange membrane water electrolysis, Chem. Soc. Rev. 2023, 52, 5652-5683. 
  33. C. Liu et al. Development of advanced anion exchange membrane from the view of the performance of water electrolysis cell, J. Energy Chem. 2024, 90, 348-369. 
  34. G. Sriram et al. Recent progress in anion exchange membranes (AEMs) in water electrolysis: synthesis, physio-chemical analysis, properties, and applications, J. Mater. Chem. A, 2023, 11, 20886-21008. 
  35. N. Du et al. Anion-Exchange Membrane Water Electrolyzers, Chem. Rev. 2022, 122, 11830-11895.  https://doi.org/10.1021/acs.chemrev.1c00854
  36. R. Vinodh et al. Recent Advancements of Polymeric Membranes in Anion Exchange Membrane Water Electrolyzer (AEMWE): A Critical Review, Polymers 2023, 15, 2144. 
  37. W. E. Mustain et al. Durability challenges of anion exchange membrane fuel cells, Energy Environ. Sci. 2020, 13, 2805-2838.  https://doi.org/10.1039/D0EE01133A
  38. L. Zhu et al. Exploring backbone-cation alkyl spacers for multi-cation side chain anion exchange membranes, J. Membr. Sci. 2018, 375, 433-441.  https://doi.org/10.1016/j.jpowsour.2017.06.020
  39. H.-S. Dang et al. Exploring Different Cationic Alkyl Side Chain Designs for Enhanced Alkaline Stability and Hydroxide Ion Conductivity of Anion-Exchange Membranes, Macromolecules 2015, 48, 5742-5751.  https://doi.org/10.1021/acs.macromol.5b01302
  40. S. A. NuMez et al. N-Alkyl Interstitial Spacers and Terminal Pendants Influence the Alkaline Stability of Tetraalkylammonium Cations for Anion Exchange Membrane Fuel Cells, Chem. Mater. 2016, 28, 2589-2598.  https://doi.org/10.1021/acs.chemmater.5b04767
  41. K. M. Hugar et al. Imidazolium Cations with Exceptional Alkaline Stability: A Systematic Study of Structure-Stability Relationships, J. Am. Chem. Soc. 2015, 137, 8730-8737.  https://doi.org/10.1021/jacs.5b02879
  42. M. Zeng et al. N-Methylquinuclidinium-Based Anion Exchange Membrane with Ultrahigh Alkaline Stability, Adv. Mater. 2023, 35, 2306675. 
  43. M. G. Marino et al. Alkaline Stability of Quaternary Ammonium Cations for Alkaline Fuel Cell Membranes and Ionic Liquids, ChemSusChem 2014, 8, 513-523.  https://doi.org/10.1002/cssc.201403022
  44. N. Chen et al. Anion exchange polyelectrolytes for membranes and ionomers, Prog. Polym. Sci. 2021, 113, 101345. 
  45. M. S. Cha, et al. Poly (carbazole)-based anion-conducting materials with high performance and durability for energy conversion devices, Energy Environ. Sci. 2020, 13, 3633-3645.  https://doi.org/10.1039/D0EE01842B
  46. N. Chen et al. Tunable multi-cations-crosslinked poly(arylene piperidinium)-based alkaline membranes with high ion conductivity and durability, J. Membr. Sci. 2019, 588, 117120. 
  47. C. hu et al. Triptycene Branched Poly(aryl-co-aryl piperidinium) Electrolytes for Alkaline Anion Exchange Membrane Fuel Cells and Water Electrolyzers, Angew. Chem. Int. Ed. 2023, 63, e202316697. 
  48. B.-G. Min. Hydrogen Production by Photoelectrochemical Cells, Polymer Science and Technology, 2008, 19, 228-232. 
  49. H. Song et al. Solar-Driven Hydrogen Production: Recent Advances, Challenges, and Future Perspectives, ACS Energy Lett. 2022, 7, 1043-1065.  https://doi.org/10.1021/acsenergylett.1c02591
  50. H. Choi et al. Recent Research Trend in Organometal Halide Perovskite-Based Photoelectrodes for Efficient Solar Hydrogen Production, KIC News, 2021, 24, 14-24. 
  51. J. Jia et al. Solar water splitting by photo-voltaicelectrolysis with a solar-to-hydrogen efficiency over 30%, Nat. Commun. 2016, 7, 13237. 
  52. S. A. Bonke et al. Renewable fuels from concentrated solar power: towards practical artificial photosynthesis, Energy Environ. Sci. 2015, 8, 2791-2796.  https://doi.org/10.1039/C5EE02214B
  53. D. Kang et al. Printed assemblies of GaAs photoelectrodes with decoupled optical and reactive interfaces for unassisted solar water splitting, Nat. Energy, 2017, 2, 17043.