DOI QR코드

DOI QR Code

Optimizing artificial neural network architectures for enhanced soil type classification

  • Yaren Aydin (Department of Civil Engineering, Istanbul University-Cerrahpasa) ;
  • Gebrail Bekdas (Department of Civil Engineering, Istanbul University-Cerrahpasa) ;
  • Umit Isikdag (Department of Informatics, Mimar Sinan Fine Arts University) ;
  • Sinan Melih Nigdeli (Department of Civil Engineering, Istanbul University-Cerrahpasa) ;
  • Zong Woo Geem (College of IT Convergence, Gachon University)
  • 투고 : 2024.01.21
  • 심사 : 2024.04.22
  • 발행 : 2024.05.10

초록

Artificial Neural Networks (ANNs) are artificial learning algorithms that provide successful results in solving many machine learning problems such as classification, prediction, object detection, object segmentation, image and video classification. There is an increasing number of studies that use ANNs as a prediction tool in soil classification. The aim of this research was to understand the role of hyperparameter optimization in enhancing the accuracy of ANNs for soil type classification. The research results has shown that the hyperparameter optimization and hyperparamter optimized ANNs can be utilized as an efficient mechanism for increasing the estimation accuracy for this problem. It is observed that the developed hyperparameter tool (HyperNetExplorer) that is utilizing the Covariance Matrix Adaptation Evolution Strategy (CMAES), Genetic Algorithm (GA) and Jaya Algorithm (JA) optimization techniques can be successfully used for the discovery of hyperparameter optimized ANNs, which can accomplish soil classification with 100% accuracy.

키워드

참고문헌

  1. Adeli, H. and Yeh, C. (1989), "Perceptron learning in engineering design", Comput. - Aided Civil Infrastruct. Eng., 4(4), 247-256. https://doi.org/10.1111/j.1467-8667.1989.tb00026.x.
  2. Ahmadian, S., Jalali, S.M.J., Raziani, S. and Chalechale, A. (2022), "An efficient cardiovascular disease detection model based on multilayer perceptron and moth-flame optimization", Exp. Syst., 39(4), e12914. https://doi.org/10.1111/exsy.12914.
  3. Alshboul, O., Shehadeh, A., Mamlook, R.E.A., Almasabha, G., Almuflih, A.S. and Alghamdi, S.Y. (2022), "Prediction liquidated damages via ensemble machine learning model: Towards sustainable highway construction projects", Sustainability, 14(15), 9303. https://doi.org/10.3390/su14159303.
  4. Alzabeebee, S., Zuhaira, A.A. and Al-Hamd, R.K.S. (2022), "Development of an optimized model to compute the undrained shaft friction adhesion factor of bored piles", Geomech. Eng., 28(4), 397-404. https://doi.org/10.12989/gae.2022.28.4.397.
  5. Amarasiri, S. and Muhunthan, B. (2022), "Evaluating cracking deterioration of preventive maintenance-treated pavements using machine learning", J. Transport. Eng. Part B: Pavements, 148(2), 04022014. https://doi.org/10.1061/JPEODX.0000354.
  6. Amancio, L.B., Dantas Neto, S.A. and Cunha, R.P.D. (2022), "Estimative of shaft and tip bearing capacities of single piles using multilayer perceptrons", Soils Rocks, 45. https://doi.org/10.28927/SR.2022.077821.
  7. Anirudh, N., Padala, S.S. and Reddy, H.E. (2022), "Development of ANN-based risk prediction model in construction projects", In Recent Advances in Sustainable Environment: Select Proceedings of the RAiSE 2022, Singapore: Nature Singapore. https://doi.org/10.1007/978-981-19-5077-3_9.
  8. Ari, A. and Berberler, M.E. (2017), "Interface design for solving prediction and classification problems with artificial neural networks", Acta Infologica, 1(2), 55-73.
  9. ASTM D2487 (1975), Standard Test Method for Classification of Soils for Engineering Purposes. 1969: R1975. ASTM: West Con-shohocken, PA, USA.
  10. Atlan, F., Hancer, E. and Pence, I. (2020), "Evaluation of hyper parameter optimization effect on nuclei segmentation with UNet", Eur. J. Sci. Tech., 60-69.
  11. Aydin, Y., Isikdag, u., Bekdas, G., Nigdeli, S.M. and Geem, Z.W. (2023), "Use of machine learning techniques in soil classification", Sustainability, 15(3), 2374. https://doi.org/10.3390/su15032374.
  12. Aydin, Y., Bekdas, G., Nigdeli, S.M., Isikdag, U. and Geem, Z.W. (2023), "Comparison of multilayer perceptron and other methods for prediction of sustainable optimum design of reinforced concrete columns", (Eds., Bekdas, G. and Nigdeli, S.M.), Hybrid Metaheuristics in Structural Engineering. Studies in Systems, Decision and Control, 480, Springer, Cham. https://doi.org/10.1007/978-3-031-34728-3_12.
  13. Aydin, Y., Cakiroglu, C., Bekdas, G., Isikdag, u., Kim, S., Hong, J. and Geem, Z.W. (2024), "Neural network predictive models for Alkali-activated concrete carbon emission using metaheuristic optimization algorithms", Sustainability, 16, 142. https://doi.org/10.3390/su16010142.
  14. Baghbani, A., Choudhury, T., Costa, S. and Reiner, J. (2022), Application of artificial intelligence in geotechnical engineering: "A state-of-the-art review", Earth-Sci. Reviews, 228, 103991. https://doi.org/10.1016/j.earscirev.2022.103991.
  15. Bai, X.D., Cheng, W.C., Ong, D.E. and Li, G. (2021), "Evaluation of geological conditions and clogging of tunneling using machine learning", Geomech. Eng., 25(1), 59-73. https://doi.org/10.12989/gae.2021.25.1.059.
  16. Bekdas, G., Nigdeli, S.M., Yucel, M. and Kayabekir, A.E. (2021), Artificial intelligence optimization algorithms and engineering applications, Seckin Publishing: Ankara, Turkey.
  17. Bekdas, G., Yucel, M. and Nigdeli, S.M. (2021), "Estimation of optimum design of structural systems via machine learning", Front. Struct. Civil Eng., 1-12. https://doi.org/10.1007/s11709-021-0774-0.
  18. Birikundavyi, S., Labib, R., Trung, H.T. and Rousselle, J. (2002), "Performance of neural networks in daily streamflow forecasting", J. Hydrol. Eng., 7(5), 392-398. https://doi.org/10.1061/(ASCE)1084-0699(2002)7:5(392).
  19. Chen, G., Yin, J. and Yang, S. (2023), "Ship autonomous berthing simulation based on covariance matrix adaptation evolution strategy", J. Mar. Sci. Eng., 11(7), 1400. https://doi.org/10.3390/jmse11071400.
  20. Chen, S.M., Wang, Y.M. and Tsou, I. (2013), "Using artificial neural network approach for modelling rainfall-runoff due to typhoon", J. Earth Syst. Sci., 122, 399-405. https://doi.org/10.1007/s12040-013-0289-8.
  21. Cheng, M.Y. and Darsa, M.H. (2021), "Construction schedule risk assessment and management strategy for foreign general contractors working in the Ethiopian construction industry", Sustainability, 13(14), 7830. https://doi.org/10.3390/su13147830.
  22. Chon, S.H. (2019), Hyperparameter Optimization of a Convolutional Neural Network. Air Force Institute of Technology Wright-Patterson AFB Oh Wright-Patterson United States.
  23. Cinaroglu, S. andBaser, O. (2020), "Comparative regression performances of machine learning methods optimising hyperparameters: application to health expenditures", Int. J. Bioinform. Res. Appl., 16(4), 387. https://doi.org/10.1504/ijbra.2020.113022.
  24. Das, S.K., Biswal, R.K., Sivakugan, N. and Das, B. (2011), "Classification of slopes and prediction of factor of safety using differential evolution neural networks", Environ. Earth Sci., 64(1), 201-210. https://doi.org/10.1007/s12665-010-0839-1.
  25. Dehghanbanadaki, A., Rashid, A.S.A., Ahmad, K., Yunus, N.Z.M. and Said, K.N.M. (2022), "A computational estimation model for the subgrade reaction modulus of soil improved with DCM columns", Geomech. Eng., 28(4), 385-396. https://doi.org/10.12989/gae.2022.28.4.385.
  26. Dinarvand, R. and Ardakani, A. (2022), "Shear behavior of geotextile-encased gravel columns in silty sand-Experimental and SVM modeling", Geomech. Eng., 28(5), 505-520. https://doi.org/10.12989/gae.2022.28.5.505.
  27. Elshorbagy, A., Simonovic, S.P. and Panu, U.S. (2000), "Performance evaluation of artificial neural networks for runoff prediction", J. Hydrol. Eng., 5(4), 424-427. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:4(424).
  28. Esmaeili-Falak, M. and Benemaran, R.S. (2023), "Ensemble deep learning-based models to predict the resilient modulus of modified base materials subjected to wet-dry cycles", Geomech. Eng., 32(6), 583-600. https://doi.org/10.12989/gae.2023.32.6.583.
  29. Fereidooni, D. and Karimi, Z. (2023), "Predicting rock brittleness indices from simple laboratory test results using some machine learning methods", Geomech. Eng., 34(6), 697-726. https://doi.org/10.12989/gae.2023.34.6.697.
  30. Ghunimat, D., Alzoubi, A.E., Alzboon, A. and Hanandeh, S. (2023), "Prediction of concrete compressive strength with GGBFS and fly ash using multilayer perceptron algorithm, random forest regression and k-nearest neighbor regression", Asian J. Civil Eng., 24(1), 169-177. https://doi.org/10.1007/s42107-022-00495-z.
  31. GeoGebra Graphing Calculator. Available online: httpss://www.geogebra.org/graphing?lang=en (accessed on 24 September 2023).
  32. Gulcu, A. and Kus, Z. (2019), "A Survey of hyper-parameter optimization methods in convolutional nural networks", Gazi Univ. J. Sci. Part C: Des. Tech., 7(2), 503-522.
  33. Hansen, N. and Ostermeier, A. (1996), "Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation", Proceedings of IEEE International Conference on Evolutionary Computation, https://doi.org/10.1109/icec.1996.542381
  34. Hasanzadehshooiili, H., Mahinroosta, R., Lakirouhani, A. and Oshtaghi, V. (2013), "Using artificial neural network (ANN) in prediction of collapse settlements of sandy gravels", Arabian J. Geosci., 7(6), 2303-2314. https://doi.org/10.1007/s12517-013-0858-9.
  35. Hema, H., Chakravarthy, H.G.N. amd Naganna, S.R. (2022), "Prediction of ultimate load carrying capacity of short cold-formed steel built-up lipped channel columns using machine learning approach", Sadhana, 47(4). https://doi.org/10.1007/s12046-022-01979-z.
  36. Holland, J.H. (1975), Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Arbor, MI, USA.
  37. Isleem, H.F., Tayeh, B.A., Alaloul, W.S., Musarat, M.A. and Raza, A. (2021), "Artificial Neural Network (ANN) and Finite Element (FEM) models for GFRP-reinforced concrete Columns under axial compression", Materials, 14(23), 7172. https://doi.org/10.3390/ma14237172 .
  38. Inik, O. and u lker, E. (2017), "Deep learning and deep learning models used in image analysis", J. Gaziosmanpasa Scientific Res., 6(3), 85-104.
  39. Jabamony, J. and Shanmugavel, G. (2020), "IoT based bus arrival time prediction using Artificial Neural Network (ANN) for Smart Public Transport System (SPTS)", Int. J. Intell. Eng. Syst., 13(1), 312-323. https://doi.org/10.22266/ijies2020.0229.29.
  40. Jia, D.W. and Wu, Z.Y. (2022), "Structural probabilistic seismic risk analysis and damage prediction based on artificial neural network", Structures, 41, 982-996. https://doi.org/10.1016/j.istruc.2022.05.056
  41. Karabas, A. (2019), Irony detection in Turkish microblogs. Master's Thesis, Yildiz Technical University, Istanbul, Turkey.
  42. Karunanithi, N., Grenney, W.J., Whitley, D. and Bovee, K. (1994), "Neural networks for river flow prediction", J. Comput. Civil Eng., 8(2), 201-220. https://doi.org/10.1061/(asce)0887-3801(1994)8:2(201).
  43. Karlik, B. and Olgac, A.V. (2011), "Performance analysis of various activation functions in generalized MLP architectures of neural networks", Int. J. Artif. Intell. Exp. Syst., 1(4), 111-122.
  44. Kasasbeh, B., Aldabaybah, B. and Ahmad, H. (2022), "Multilayer perceptron artificial neural networks-based model for credit card fraud detection", Indonesian J. Elec. Eng. Comput. Sci., 26(1), 362-373. https://doi.org/10.11591/ijeecs.v26.i1.pp362-373.
  45. Kaveh, A., Fahimi-Farzam, M. and Kalateh-Ahani, M. (2012), "Time-history analysis based optimal design of space trusses: The CMA evolution strategy approach using GRNN and WA", Struct. Eng. Mech., 44(3), 379-403. http://doi.org/10.12989/sem.2012.44.3.379.
  46. Kukreja, H., Bharath, N., Siddesh, C.S. and Kuldeep, S. (2016), "An introduction to artificial neural network", Int. J. Adv. Res. Innov. Ideas Educ., 1, 27-30.
  47. Kwak, N.S. and Ko, T.Y. (2022), "Machine learning-based regression analysis for estimating Cerchar abrasivity index", Geomech. Eng., 29(3), 219-228. https://doi.org/10.12989/gae.2022.29.3.219.
  48. Lawal, A.I., Kwon, S., Aladejare, A.E. and Oniyide, G.O. (2022), "Prediction of the static and dynamic mechanical properties of sedimentary rock using soft computing methods", Geomech. Eng., 28(3), 313-324. https://doi.org/10.12989/gae.2022.28.3.313.
  49. Lee, J.S., Park, J., Kim, J. and Yoon, H.K. (2022), "Study of oversampling algorithms for soil classifications by field velocity resistivity probe", Geomech. Eng., 30(3), 247-258. https://doi.org/10.12989/gae.2022.30.3.247.
  50. Lee, K.S., Ahn, J.H., Park, H.Y., Seo, Y.D. and Kim, S.C. (2022), "Seismic acceleration estimation method at arbitrary position using observations and machine learning", KSCE J. Civil Eng., 27(2), 712-726. https://doi.org/10.1007/s12205-022-1235-6.
  51. Li, J., Gao, F., Lin, S., Guo, M., Li, Y., Liu, H. and Wen, Q. (2023), "Quantum k-fold cross-validation for nearest neighbor classification algorithm", Physica A: Statist. Mech. Appl., 611, 128435. https://doi.org/10.1016/j.physa.2022.128435.
  52. Liang, Y., Wang, X., Zhao, H., Han, T., Wei, Z. and Li, Y. (2019), "A covariance matrix adaptation evolution strategy variant and its engineering application", Appl. Soft Comput., 83, 105680. https://doi.org/10.1016/j.asoc.2019.105680.
  53. Mahmoodzadeh, A., Mohammadi, M., Abdulhamid, S.N., Ibrahim, H.H., Ali, H.F.H., Nejati, H.R. and Rashidi, S. (2022), "Prediction of duration and construction cost of road tunnels using Gaussian process regression", Geomech. Eng., 28(1), 65-75. https://doi.org/10.12989/gae.2021.28.1.065.
  54. Menon, U.A. and Nair, D.S. (2022), "Seismic response prediction of RC buildings using artificial Neural Network", Proceedings of the SECON'22, 403-413. https://doi.org/10.1007/978-3-031-12011-4_31.
  55. Neeraja, D., Kamireddy, T., Kumar, P.S. and Reddy, V.S. (2017), "Weight optimization of plane truss using genetic algorithm", Proceedings of the IOP Conference Series: Materials Science and Engineering, 263, 032015. https://doi.org/10.1088/1757-899x/263/3/032015.
  56. Nigdeli, S.M., Yucel, M. and Bekdas, G. (2022), "A hybrid artificial intelligence model for design of reinforced concrete columns", Neural Comput. Appl., 35(10), 7867-7875. https://doi.org/10.1007/s00521-022-08164-7.
  57. Owusu-Ababio, S. (1998), "Effect of neural network topology on flexible pavement cracking prediction", Comput.-Aided Civil Infrastruct. Eng., 13(5), 349-355. https://doi.org/10.1111/0885-9507.00113
  58. Oztemel, E. (2006), Artificial Neural Networks. Papatya.
  59. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, S., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J. and Chintala, S. (2019), "PyTorch: An imperative style, high-performance deep learning library", Adv. Neural Inform. Process. Syst., 32, 8024-8035. Curran Associates, Inc. Retrieved from https://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-
  60. Patil-Shinde, V., Lakshete, V.A. and Gadekar-Shinde, S. (2023), "Bio-diesel synthesis from waste sunflower oil: Experimental and multilayer perceptron neural network modeling", Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.01.117
  61. Pereira, L., Godinho, L. and Branco, F.G. (2023), "Predicting unconfined compression strength and split tensile strength of soil-cement via artificial neural networks", Geomech. Eng., 33(6), 611-624. http://doi.org/10.12989/gae.2023.33.6.611.
  62. Ramli, A.S., Rashid, M.I.M. and Ahmad, M.A. (2020), "Energy management strategy of hev based on simulated annealing", Int. J. Integrated Eng., 12(2), 30-37. https://doi.org/10.30880/ijie.2020.12.02.004
  63. Venkata Rao, R. (2016), "Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems", Int. J. Ind. Eng. Comput., 19-34. https://doi.org/10.5267/j.ijiec.2015.8.004.
  64. Ruuska, S., Hamalainen, W., Kajava, S., Mughal, M., Matilainen, P. and Mononen, J. (2018), "Evaluation of the confusion matrix method in the validation of an automated system for measuring feeding behaviour of cattle", Behavioural Processes, 148, 56-62. https://doi.org/10.1016/j.beproc.2018.01.004.
  65. Samui, P. and Sitharam, T.G. (2010), "Site characterization model using artificial neural network and Kriging", Int. J. Geomech., 10(5), 171-180. https://doi.org/10.1061/(asce)1532-3641(2010)10:5(171).
  66. Sanni-Anibire, M.O., Zin, R.M. and Olatunji, S.O. (2020), Machine learning model for delay risk assessment in tall building projects", Int. J. Constr. Management, 22(11), 2134-2143. https://doi.org/10.1080/15623599.2020.1768326.
  67. Sharma, V., Pratap Singh Chouhan, A. and Bisen, D. (2022), "Prediction of activation energy of biomass wastes by using multilayer perceptron neural network with Weka", Materials Today: Proceedings, 57, 1944-1949. https://doi.org/10.1016/j.matpr.2022.03.051.
  68. Singh, V., Bano, S., Ahmad, A.K. and Ahmad, S. (2019), "Feasibility of artificial neural network in civil engineering", Int. J. Trend Scientific Res. Development, 3(3), 724-728. https://doi.org/10.31142/ijtsrd22985.
  69. Sivrikaya, O. and Soycan, T.Y. (2010), "Estimation of compaction parameters of fine-grained soils in terms of compaction energy using artificial neural networks", Int. J. Numer. Anal. Method. Geomech., 35(17), 1830-1841. https://doi.org/10.1002/nag.981.
  70. Soyer, M.A., Kalayci, C.B. and Karakas, O . (2022), "Low-cycle fatigue parameters and fatigue life estimation of high-strength steels with artificial neural networks", Fatigue Fract. Eng. M., 45(12), 3764-3785. Portico. https://doi.org/10.1111/ffe.13847.
  71. Sridhar, J., Balaji, S., Jegatheeswaran, D. and Awoyera, P. (2023), "Prediction of the mechanical properties of fibre-reinforced quarry dust concrete using response surface and artificial Neural network techniques", Adv. Civil Eng., 2023, 1-13. https://doi.org/10.1155/2023/8267639.
  72. Su, M., Feng, G., Liu, Z., Li, Y. and Wang, R. (2020), "Tapping on the black box: how is the scoring power of a machine-learning scoring function dependent on the training set?", J. Chem. Inform. Model., 60(3), 1122-1136. https://doi.org/10.1021/acs.jcim.9b00714.
  73. Tachi, S.E., Ouerdachi, L., Remaoun, M., Derdous, O. and Boutaghane, H. (2016), "Forecasting suspended sediment load using regularized neural network: Case study of the Isser River (Algeria)", J. Water Land Development, 29(1), 75. htts://doi.org/10.1515/jwld-2016-0014.
  74. Tinoco, J., Correia, A.G. and Cortez, P. (2009), "A data mining approach for Jet Grouting Uniaxial Compressive Strength prediction", Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC). https://doi.org/10.1109/nabic.2009.5393401.
  75. Topcu, I.B. and Saridemir, M. (2008), "Prediction of rubberized concrete properties using artificial neural network and fuzzy logic", Constr. Build. Mater., 22(4), 532-540. https://doi.org/10.1016/j.conbuildmat.2006.11.007.
  76. McCulloch, W.S. and Pitts, W. (1943), "A logical calculus of the ideas immanent in nervous activity", Bull. Math. Biophys., 5(4), 115-133. https://doi.org/10.1007/bf02478259.
  77. Van Thieu, N. and Mirjalili, S. (2023), "MEALPY: An open-source library for latest meta-heuristic algorithms in Python", J. Syst. Architect., 139, 102871. https://doi.org/10.1016/j.sysarc.2023.102871.
  78. Verma, G. and Kumar, B. (2022), "Multi-layer perceptron (MLP) neural network for predicting the modified compaction parameters of coarse-grained and fine-grained soils", Innov. Infrastruct. Solution., 7(1), 78. https://doi.org/10.1007/s41062-021-00679-7.
  79. Wrzesinski, G. and Markiewicz, A. (2022), "Prediction of permeability coefficient k in sandy soils using ANN", Sustainability, 14(11), 6736. https://doi.org/10.3390/su14116736.
  80. Wu, D., Ma, X. and Olson, D.L. (2022), "Financial distress prediction using integrated Z-score and multilayer perceptron neural networks", Decision Support Systems, 159, 113814. https://doi.org/10.1016/j.dss.2022.113814.
  81. Xie, S., Li, Y., Tan, H., Liu, R. and Zhang, F. (2022), "Multi-scale and multi-layer perceptron hybrid method for bearings fault diagnosis", Int. J. Mech. Sci., 235, 107708. https://doi.org/10.1016/j.ijmecsci.2022.107708.
  82. Yadav, S. and Shukla, S. (2016), "Analysis of k-fold cross-validation over hold-out validation on colossal datasets for quality classification", Proceedings of the 2016 IEEE 6th International conference on advanced computing (IACC), IEEE. https://doi.org/10.1109/IACC.2016.25.
  83. Yilmaz, I., Yildirim, M. and Keskin, I. (2016), Soil mechanics laboratory experiments and solved problems, Seckin Publishing.
  84. Yucel, M., Bekdas, G., Nigdeli, S.M. and Sevgen, S. (2018), "Artificial neural network model for optimum design of tubular columns", Int. J. Theor. Appl. Mech., 3.
  85. Yucel, M., Nigdeli, S.M. and Bekdas, G. (2019), "Generation of an artificial neural network model for optimum design of I-beam with minimum vertical deflection", Proceedings of the 12th HSTAM international congress on mechanics, Thessaloniki, Greece.
  86. Yucel, M., Kayabekir, A.E., Nigdeli, S.M. and Bekdas, G. (2022), "Optimum design of Carbon Fiber-Reinforced Polymer (CFRP) beams for shear capacity via machine learning methods", Res. Anthology on Machine Learning Techniques, Method. Appl., 308-326. https://doi.org/10.4018/978-1-6684-6291-1.ch018.
  87. Yucel, M., Nigdeli, S.M., Kayabekir, A.E. and Bekdas, G. (2021), "Optimization and artificial neural network models for reinforced concrete members", Nature-Inspired Metaheuristic Algorithms for Engineering Optimization Applications, 181-199. https://doi.org/10.1007/978-981-33-6773-9_9.
  88. Yucel, M., Bekdas, G., Nigdeli, S.M. and Kayabekir, A.E. (2021), "An artificial intelligence-based prediction model for optimum design variables of reinforced concrete retaining walls", Int. J. Geomech., 21(12). https://doi.org/10.1061/(asce)gm.1943-5622.0002234.
  89. Zendehboudi, A. and Saidur, R. (2019), "A reliable model to estimate the effective thermal conductivity of nanofluids", Heat Mass Transfer., 55, 397-411. https://doi.org/10.1007/s00231-018-2420-5
  90. Zhang, G., Ali, Z.H., Aldlemy, M.S., Mussa, M.H., Salih, S.Q., Hameed, M.M., Al-Khafaji, Z.S. and Yaseen, Z.M. (2020), "Reinforced concrete deep beam shear strength capacity modelling using an integrative bio-inspired algorithm with an artificial intelligence model", Eng. with Comput., 1-14.
  91. Zhang, G., Chen, C., Zhang, Y., Zhao, H., Wang, Y. and Wang, X. (2022), "Optimised neural network prediction of interface bond strength for GFRP tendon reinforced cemented soil", Geomech. Eng., 28(6), 599-611. https://doi.org/10.12989/gae.2022.28.6.599.
  92. Zheng, A. (2015), Evaluating Machine Learning Models A Beginner's Guide to Key Concepts and Pitfalls, O'Reilly.