과제정보
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R1A2C2012113).
참고문헌
- Anbazhagan, P., Kumar, A. and Sitharam, T.G. (2013), "Seismic site classification and correlation between standard penetration test N value and shear wave velocity for Lucknow City in Indo-Gangetic Basin", Pure Appl. Geophys., 170, 299-318. https://doi.org/10.1007/s00024-012-0525-1.
- Ataee, O., Moghaddas, N.H. and Lashkaripour, G.R. (2019), "Estimating shear wave velocity of soil using standard penetration test (SPT) blow counts in Mashhad city", J. Earth Syst. Sci., 128(3), 66. https://doi.org/10.1007/s12040-019-1077-x.
- Benemaran, R.S. and Esmaeili-Falak, M. (2023), "Predicting the Young's modulus of frozen sand using machine learning approaches: State-of-the-art review", Geomech. Eng., 34(5), 507-527. https://doi.org/10.12989/gae.2023.34.5.507.
- Do, T.M., Laue, J., Mattsson, H. and Jia, Q. (2023), "Excess pore water pressure generation in fine granular materials under undrained cyclic triaxial loading", Int. J. Geo-Eng., 14(1), 8. https://doi.org/10.1186/s40703-023-00185-y.
- Fauzi, A., Irsyam, M. and Fauzi, U.J. (2014), "Empirical correlation of shear wave velocity and N-SPT value for Jakarta", GEOMATE J., 7(13), 980-984. https://doi.org/10.21660/2014.13.3263.
- Fereidooni, D. and Karimi, Z. (2023), "Predicting rock brittleness indices from simple laboratory test results using some machine learning methods", Geomech. Eng., 34(6), 697-726. https://doi.org/10.12989/gae.2023.34.6.697.
- Ghazi, A., Moghadas, N.H., Sadeghi, H., Ghafoori, M. and Lashkaripur, G.R. (2015), "Empirical relationships of shear wave velocity, SPT-N value and vertical effective stress for different soils in Mashhad", Iran. Annal. Geophys., 58(3), 2015. https://doi.org/10.4401/ag-6635.
- Gomaa, A.E., Hasan, A.M., Mater, Y.M. and AbdelSalam, S.S. (2023), "Shell folded footings using different angles and EPS cavity filling: experimental study", Int. J. Geo-Eng., 14(1), 10. https://doi.org/10.1186/s40703-023-00187-w.
- Heo, G., Kim, J., Jeong, S. and Kwak, D. (2023), "Evaluation of shear wave velocity prediction models from standard penetration test N values depending on geologic attributes: A case study in Busan", South Korea. Geotechnics, 3(4), 1004-1016. https://doi.org/10.3390/geotechnics3040054.
- Hong, W.T., Lee, J.S., Lee, D. and Yoon, H.K. (2022), "Estimation of bulk electrical conductivity in saline medium with contaminated lead solution through TDR coupled with machine learning", Process Saf. Environ. Protection, 161, 58-66. https://doi.org/10.1016/j.psep.2022.03.018.
- Ihsan, S., Saqib, S., Rashid, H.M.A., Niazi, F.S. and Qureshi, M.U. (2023), "Predicting blast-induced ground vibrations at limestone quarry from artificial neural network optimized by randomized and grid search cross-validation, and comparative analyses with blast vibration predictor models", Geomech. Eng., 35(2), 121-133. https://doi.org/10.12989/gae.2023.35.2.121.
- Kim, S. and Yoon, H.K. (2023), "Application of classification coupled with PCA and SMOTE, for obtaining safety factor of landslide based on HRA", Bull. Eng. Geol. Environ., 82(10), 381. https://doi.org/10.1007/s10064-023-03403-0.
- Lee, D.G., Lee, S.Y. and Song, K.I. (2023), "Development of stability evaluation system for retaining walls: Differential evolution algorithm-artificial neural network", Geomech. Eng., 34(3), 329-339. https://doi.org/10.12989/gae.2023.34.3.329.
- Lee, J.S., Park, J., Kim, J. and Yoon, H.K. (2022), "Study of oversampling algorithms for soil classifications by field velocity resistivity probe", Geomech. Eng., 30(3), 247-258. https://doi.org/10.12989/gae.2022.30.3.247.
- Lee, S.J. and Choi, S.O. (2023), "Mean fragmentation size prediction in an open-pit mine using machine learning techniques and the Kuz-Ram model", Geomech. Eng., 34(5), 547-559. https://doi.org/10.12989/gae.2023.34.5.547.
- Madhushani, C., Dananjaya, K., Ekanayake, I.U., Meddage, D.P. P., Kantamaneni, K. and Rathnayake, U. (2024), "Modeling streamflow in non-gauged watersheds with sparse data considering physiographic, dynamic climate, and anthropogenic factors using explainable soft computing techniques", J. Hydrology, 130846. https://doi.org/10.1016/j.jhydrol.2024.130846.
- Meddage, P., Ekanayake, I., Perera, U.S., Azamathulla, H.M., Md Said, M.A. and Rathnayake, U. (2022). Interpretation of machine-learning-based (black-box) wind pressure predictions for low-rise gable-roofed buildings using Shapley additive explanations (SHAP)", Buildings, 12(6), 734. https://doi.org/10.3390/buildings12060734.
- Menze, B.H., Kelm, B.M., Masuch, R., Himmelreich, U., Bachert, P., Petrich, W. and Hamprecht, F.A. (2009), "A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data", BMC Bioinformatics, 10, 1-16. https://doi.org/10.1186/1471-2105-10-213.
- Min, D.H. and Yoon, H.K. (2021), "Suggestion for a new deterministic model coupled with machine learning techniques for landslide susceptibility mapping", Scientific Reports, 11(1), 1-24. https://doi.org/10.1038/s41598-021-86137-x.
- Min, D.H., Kim, Y., Kim, S. and Yoon, H.K. (2023), "Strategy of oversampling geotechnical parameters through geostatistical, SMOTE, and CTGAN methods for assessing susceptibility of landslide", Landslides, 1-17. https://doi.org/10.1007/s10346-023-02166-9.
- Nguyen, A.D., Nguyen, V.T. and Kim, Y.S. (2023), "Finite element analysis on dynamic behavior of sheet pile quay wall dredged and improved seaside subsoil using cement deep mixing", Int. J. Geo-Eng., 14(1), 9. https://doi.org/10.1186/s40703-023-00186-x.
- Park, J., Lee, J.S., Jang, B.S., Min, D.H. and Yoon, H.K. (2022), "A comprehensive laboratory compaction study: Geophysical assessment", Geomech. Eng., 30(2), 211-218. https://doi.org/10.12989/gae.2022.30.2.211.
- Park, J., Lee, J.S. and Yoon, H.K. (2023), "Geoacoustic and geophysical data-driven seafloor sediment classification through machine learning algorithms with property-centered oversampling techniques", Comput.-Aided Civil Infrastruct. Eng., https://doi.org/10.1111/mice.13126.
- Rajabian, A. (2023), "Effect of initial failure geometry on the progress of a retrogressive seepage-induced landslide", Int. J. Geo-Eng., 14(1), 11. https://doi.org/10.1186/s40703-023-00189-8.
- Saarela, M. and Jauhiainen, S. (2021), "Comparison of feature importance measures as explanations for classification models", SN Appl. Sci., 3(2), 272. https://doi.org/10.1007/s42452-021-04148-9.
- Thisovithan, P., Aththanayake, H., Meddage, D.P.P., Ekanayake, I. U. and Rathnayake, U. (2023), "A novel explainable AI-based approach to estimate the natural period of vibration of masonry infill reinforced concrete frame structures using different machine learning techniques", Results in Eng., 19, 101388. https://doi.org/10.1016/j.rineng.2023.101388.
- Yazdandoust, M., Jamnani, A.R. and Sabermahani, M. (2023), "The role of wall configuration and reinforcement type in selecting the pseudo-static coefficients for reinforced soil walls", Geomech. Eng., 35(5), 555-570. https://doi.org/10.12989/gae.2023.35.5.555.
- Yoon, H.K., Lee, J.S. and Yu, J.D. (2022), "Correlation of granite rock properties with longitudinal wave velocity in rock bolt", Int. J. Rock Mech. Min. Sci., 159, 105200. https://doi.org/10.1016/j.ijrmms.2022.105200.
- Yu, J.D., Lee, J.S. and Yoon, H.K. (2021), "Effects of rock weathering on guided wave propagation in rock bolts", Tunn. Undergr. Sp. Tech., 115, 104069. https://doi.org/10.1016/j.tust.2021.104069.
- Zhang, J., Zhou, X., Huang, X., Liu, X., Yuan, J., Liang, X. and Li, J. (2023), "Study on the root interaction characteristics and nonlinear deformation prediction of root piles", Geomech. Eng., 35(3), 221-239. https://doi.org/10.12989/gae.2023.35.3.221.