Acknowledgement
The authors would like to thank the anonymous referee for her/his useful comments and valuable suggestions which improved and clarified the paper.
References
- D. Applebaum, Levy processes-from probability to finance and quantum groups, Notices Amer. Math. Soc. 51 (2004), no. 11, 1336-1347.
- B. Barrios, I. De Bonis, M. Medina, and I. Peral, Semilinear problems for the fractional laplacian with a singular nonlinearity, Open Math. 13 (2015), no. 1, 390-407. https://doi.org/10.1515/math-2015-0038
- C. Brandle, E. Colorado, A. de Pablo, and U. Sanchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A 143 (2013), no. 1, 39-71. https://doi.org/10.1017/S0308210511000175
- L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245-1260. https://doi.org/10.1080/03605300600987306
- M. Cai and L. Ma, Moving planes for nonlinear fractional Laplacian equation with negative powers, Discrete Contin. Dyn. Syst. 38 (2018), no. 9, 4603-4615. https://doi.org/10.3934/dcds.2018201
- L. Cao and X. Wang, Radial symmetry of positive solutions to a class of fractional Laplacian with a singular nonlinearity, J. Korean Math. Soc. 58 (2021), no. 6, 1449-1460. https://doi.org/10.4134/JKMS.j210091
- W. Chen, Y. Fang, and R. Yang, Liouville theorems involving the fractional Laplacian on a half space, Adv. Math. 274 (2015), 167-198. https://doi.org/10.1016/j.aim.2014.12.013
- W. Chen and C. Li, Maximum principles for the fractional p-Laplacian and symmetry of solutions, Adv. Math. 335 (2018), 735-758. https://doi.org/10.1016/j.aim.2018.07.016
- W. Chen, C. Li, and G. Li, Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions, Calc. Var. Partial Differential Equations 56 (2017), no. 2, Paper No. 29, 18 pp. https://doi.org/10.1007/s00526-017-1110-3
- W. Chen, C. Li, and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math. 308 (2017), 404-437. https://doi.org/10.1016/j.aim.2016.11.038
- W. Chen, Y. Li, and P. Ma, The Fractional Laplacian, World Sci. Publ., Hackensack, NJ, 2020. https://doi.org/10.1142/10550
- W. Chen, Y. Li, and R. Zhang, A direct method of moving spheres on fractional order equations, J. Funct. Anal. 272 (2017), no. 10, 4131-4157. https://doi.org/10.1016/j.jfa.2017.02.022
- C. Cheng, Z. Lu, and Y. Lu, A direct method of moving planes for the system of the fractional Laplacian, Pacific J. Math. 290 (2017), no. 2, 301-320. https://doi.org/10.2140/pjm.2017.290.301
- W. Dai, G. Qin, and D. Wu, Direct methods for pseudo-relativistic Schrodinger operators, J. Geom. Anal. 31 (2021), no. 6, 5555-5618. https://doi.org/10.1007/s12220-020-00492-1
- R. L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in R, Acta Math. 210 (2013), no. 2, 261-318. https://doi.org/10.1007/s11511-013-0095-9
- R. L. Frank, E. Lenzmann, and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math. 69 (2016), no. 9, 1671-1726. https://doi.org/10.1002/cpa.21591
- J. Giacomoni, T. Mukherjee, and K. Sreenadh, Positive solutions of fractional elliptic equation with critical and singular nonlinearity, Adv. Nonlinear Anal. 6 (2017), no. 3, 327-354. https://doi.org/10.1515/anona-2016-0113
- S. Jarohs and T. Weth, Symmetry via antisymmetric maximum principles in nonlocal problems of variable order, Ann. Mat. Pura Appl. (4) 195 (2016), no. 1, 273-291. https://doi.org/10.1007/s10231-014-0462-y
- T. Jin, Y. Y. Li, and J. Xiong, On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 6, 1111-1171. https://doi.org/10.4171/JEMS/456
- T. Jin and J. Xiong, A fractional Yamabe flow and some applications, J. Reine Angew. Math. 696 (2014), 187-223. https://doi.org/10.1515/crelle-2012-0110
- P. Le, Symmetry of positive solutions to quasilinear fractional systems, Taiwanese J. Math. 25 (2021), no. 3, 517-534. https://doi.org/10.11650/tjm/201203
- C. Li, Monotonicity and symmetry of solutions of fully nonlinear elliptic equations on bounded domains, Comm. Partial Differential Equations 16 (1991), no. 2-3, 491-526. https://doi.org/10.1080/03605309108820766
- B. Liu and L. Ma, Radial symmetry results for fractional Laplacian systems, Nonlinear Anal. 146 (2016), 120-135. https://doi.org/10.1016/j.na.2016.08.022
- Y. Lu and Z. Lu, Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system, Discrete Contin. Dyn. Syst. 36 (2016), no. 7, 3791-3810. https://doi.org/10.3934/dcds.2016.36.3791
- T. Mukherjee and K. Sreenadh, Fractional elliptic equations with critical growth and singular nonlinearities, Electron. J. Differential Equations 2016 (2016), Paper No. 54, 23 pp.
- Y. Niu, Monotonicity of solutions for a class of nonlocal Monge-Amp'ere problem, Commun. Pure Appl. Anal. 19 (2020), no. 11, 5269-5283. https://doi.org/10.3934/cpaa.2020237
- M. Qie, Z. Lu, and X. Zhang, A direct method of moving planes for the fractional p-Laplacian system with negative powers, Indian J. Pure Appl. Math. 54 (2023), no. 2, 344-358. https://doi.org/10.1007/s13226-022-00257-2
- L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math. 60 (2007), no. 1, 67-112. https://doi.org/10.1002/cpa.20153
- P. Wang and P. Niu, A direct method of moving planes for a fully nonlinear nonlocal system, Commun. Pure Appl. Anal. 16 (2017), no. 5, 1707-1718. https://doi.org/10.3934/cpaa.2017082
- G. Wang and X. Ren, Radial symmetry of standing waves for nonlinear fractional Laplacian Hardy-Schrodinger systems, Appl. Math. Lett. 110 (2020), 106560, 8 pp. https://doi.org/10.1016/j.aml.2020.106560
- P. Wang and M. Yu, Solutions of fully nonlinear nonlocal systems, J. Math. Anal. Appl. 450 (2017), no. 2, 982-995. https://doi.org/10.1016/j.jmaa.2017.01.070
- X. Wang and L. Zhang, Existence and multiplicity of weak positive solutions to a class of fractional Laplacian with a singular nonlinearity, Results Math. 74 (2019), no. 2, Paper No. 81, 18 pp. https://doi.org/10.1007/s00025-019-1004-0
- L. Wu and W. Chen, The sliding methods for the fractional p-Laplacian, Adv. Math. 361 (2020), 106933, 26 pp. https://doi.org/10.1016/j.aim.2019.106933
- L. Wu and P. Niu, Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations, Discrete Contin. Dyn. Syst. 39 (2019), no. 3, 1573-1583. https://doi.org/10.3934/dcds.2019069
- Z. Wu and H. Xu, Symmetry properties in systems of fractional Laplacian equations, Discrete Contin. Dyn. Syst. 39 (2019), no. 3, 1559-1571. https://doi.org/10.3934/dcds.2019068
- L. Zhang, B. Ahmad, G. Wang, and X. Ren, Radial symmetry of solution for fractional p-Laplacian system, Nonlinear Anal. 196 (2020), 111801, 16 pp. https://doi.org/10.1016/j.na.2020.111801
- B. Zhang and Z. Lu, Symmetry and nonexistence of solutions for a fully nonlinear nonlocal system, Pacific J. Math. 299 (2019), no. 1, 237-255. https://doi.org/10. 2140/pjm.2019.299.237 https://doi.org/10.2140/pjm.2019.299.237
- R. Zhuo, W. Chen, X. Cui, and Z. Yuan, Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian, Discrete Contin. Dyn. Syst. 36 (2016), no. 2, 1125-1141. https://doi.org/10.3934/dcds.2016.36.1125