DOI QR코드

DOI QR Code

Brain plasticity and ginseng

  • Myoung-Sook Shin (College of Korean Medicine, Gachon University) ;
  • YoungJoo Lee (Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University) ;
  • Ik-Hyun Cho (Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University) ;
  • Hyun-Jeong Yang (Department of Integrative Bioscience, University of Brain Education)
  • 투고 : 2023.11.15
  • 심사 : 2024.03.21
  • 발행 : 2024.05.01

초록

Brain plasticity refers to the brain's ability to modify its structure, accompanied by its functional changes. It is influenced by learning, experiences, and dietary factors, even in later life. Accumulated researches have indicated that ginseng may protect the brain and enhance its function in pathological conditions. There is a compelling need for a more comprehensive understanding of ginseng's role in the physiological condition because many individuals without specific diseases seek to improve their health by incorporating ginseng into their routines. This review aims to deepen our understanding of how ginseng affects brain plasticity of people undergoing normal aging process. We provided a summary of studies that reported the impact of ginseng on brain plasticity and related factors in human clinical studies. Furthermore, we explored researches focused on the molecular mechanisms underpinning the influence of ginseng on brain plasticity and factors contributing to brain plasticity. Evidences indicate that ginseng has the potential to enhance brain plasticity in the context of normal aging by mediating both central and peripheral systems, thereby expecting to improve age-related declines in brain function. Moreover, given modern western diet can damage neuroplasticity in the long term, ginseng can be a beneficial supplement for better brain health.

키워드

과제정보

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1I1A3A04038150) to H.J.Yang and a grant of the Basic Science Research Program through the National Research Foundation (NRF) funded by the Ministry of Science, and ICT, Republic of Korea (NRF-2022R1A2C2009817) to I. H. Cho.

참고문헌

  1. Xu S, Jiang M, Liu X, Sun Y, Yang L, Yang Q, et al. Neural circuits for social interactions: from microcircuits to input-output circuits. Front Neural Circuits 2021;15:768294. 
  2. Malezieux M, Klein AS, Gogolla N. Neural circuits for emotion. Annu Rev Neurosci 2023;46:211-31.  https://doi.org/10.1146/annurev-neuro-111020-103314
  3. Asok A, Leroy F, Rayman JB, Kandel ER. Molecular mechanisms of the memory trace. Trends Neurosci 2019;42:14-22.  https://doi.org/10.1016/j.tins.2018.10.005
  4. Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A. Neuroplasticity: changes in grey matter induced by training. Nature 2004;427:311-2.  https://doi.org/10.1038/427311a
  5. Scholz J, Klein MC, Behrens TE, Johansen-Berg H. Training induces changes in white-matter architecture. Nat Neurosci 2009;12:1370-1.  https://doi.org/10.1038/nn.2412
  6. Sancho L, Contreras M, Allen NJ. Glia as sculptors of synaptic plasticity. Neurosci Res 2021;167:17-29.  https://doi.org/10.1016/j.neures.2020.11.005
  7. Spinelli M, Fusco S, Grassi C. Brain insulin resistance and hippocampal plasticity: mechanisms and biomarkers of cognitive decline. Front Neurosci 2019;13:788. 
  8. Cali C, Tauffenberger A, Magistretti P. The strategic location of glycogen and lactate: from body energy reserve to brain plasticity. Front Cell Neurosci 2019;13:82. 
  9. Mainardi M, Fusco S, Grassi C. Modulation of hippocampal neural plasticity by glucose-related signaling. Neural Plast 2015;2015:657928. 
  10. Lupien SJ, McEwen BS, Gunnar MR, Heim C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci 2009;10:434-45.  https://doi.org/10.1038/nrn2639
  11. Johnson AK, Xue B. Central nervous system neuroplasticity and the sensitization of hypertension. Nat Rev Nephrol 2018;14:750-66.  https://doi.org/10.1038/s41581-018-0068-5
  12. Davies DA, Adlimoghaddam A, Albensi BC. Role of nrf2 in synaptic plasticity and memory in alzheimer's disease. Cells 2021;10. 
  13. Morais LH, Schreiber HLt, Mazmanian SK. The gut microbiota-brain axis in behaviour and brain disorders. Nat Rev Microbiol 2021;19:241-55.  https://doi.org/10.1038/s41579-020-00460-0
  14. Baeg IH, Sh So. The world ginseng market and the ginseng (korea). J Ginseng Res 2013;37:1-7.  https://doi.org/10.5142/jgr.2013.37.1
  15. Lee SM, Bae BS, Park HW, Ahn NG, Cho BG, Cho YL, et al. Characterization of Korean red ginseng (panax ginseng meyer): history, preparation method, and chemical composition. J Ginseng Res 2015;39:384-91.  https://doi.org/10.1016/j.jgr.2015.04.009
  16. Lee SM, Kim SC, Oh J, Kim JH, Na MK. 20(r)-ginsenoside rf: a new ginsenoside from red ginseng extract. Phytochem Lett 2013;6:4. 
  17. Kim WY, Kim JM, Han SB, Lee SK, Kim ND, Park MK, et al. Steaming of ginseng at high temperature enhances biological activity. J Nat Prod 2000;63:1702-4.  https://doi.org/10.1021/np990152b
  18. G, Ahn NG, Bae BS, Lee MW, Park HW, Jang KH, et al. In situ analysis of chemical components induced by steaming between fresh ginseng, steamed ginseng, and red ginseng. J Ginseng Res 2017;41:361-9.  https://doi.org/10.1016/j.jgr.2016.07.004
  19. Wang YZ, Xu Q, Wu W, Liu Y, Jiang Y, Cai QQ, et al. Brain transport profiles of ginsenoside rb(1) by glucose transporter 1: in vitro and in vivo. Front Pharmacol 2018;9:398. 
  20. Liang W, Xu W, Zhu J, Zhu Y, Gu Q, Li Y, et al. Ginkgo biloba extract improves brain uptake of ginsenosides by increasing blood-brain barrier permeability via activating a1 adenosine receptor signaling pathway. J Ethnopharmacol 2020;246:112243. 
  21. Kim DG, Jang M, Choi SH, Kim HJ, Jhun H, Kim HC, et al. Gintonin, a ginseng-derived exogenous lysophosphatidic acid receptor ligand, enhances blood-brain barrier permeability and brain delivery. Int J Biol Macromol 2018;114:1325-37.  https://doi.org/10.1016/j.ijbiomac.2018.03.158
  22. Zhao YN, Shao X, Ouyang LF, Chen L, Gu L. Qualitative detection of ginsenosides in brain tissues after oral administration of high-purity ginseng total saponins by using polyclonal antibody against ginsenosides. Chin J Nat Med 2018;16:175-83. 
  23. Shi J, Xue W, Zhao WJ, Li KX. Pharmacokinetics and dopamine/acetylcholine releasing effects of ginsenoside re in hippocampus and mpfc of freely moving rats. Acta Pharmacol Sin 2013;34:214-20.  https://doi.org/10.1038/aps.2012.147
  24. Wang Y, Mishra A, Brinton RD. Transitions in metabolic and immune systems from pre-menopause to post-menopause: implications for age-associated neurodegenerative diseases. F1000Res 2020;9. 
  25. Lindenberger U, Lovden M. Brain plasticity in human lifespan development: the exploration-selection-refinement model. Annual Review of Developmental Psychology 2019;1. 
  26. Armstrong NM, Dumitrescu L, Huang CW, An Y, Tanaka T, Hernandez D, et al. Association of hippocampal volume polygenic predictor score with baseline and change in brain volumes and cognition among cognitively healthy older adults. Neurobiol Aging 2020;94:81-8.  https://doi.org/10.1016/j.neurobiolaging.2020.05.007
  27. Fado R, Molins A, Rojas R, Casals N. Feeding the brain: effect of nutrients on cognition, synaptic function, and ampa receptors. Nutrients 2022;14. 
  28. Kennedy DO, Scholey AB, Wesnes KA. Modulation of cognition and mood following administration of single doses of ginkgo biloba, ginseng, and a ginkgo/ginseng combination to healthy young adults. Physiol Behav 2002;75:739-51.  https://doi.org/10.1016/S0031-9384(02)00665-0
  29. Reay JL, Scholey AB, Kennedy DO. Panax ginseng (g115) improves aspects of working memory performance and subjective ratings of calmness in healthy young adults. Hum Psychopharmacol 2010;25:462-71.  https://doi.org/10.1002/hup.1138
  30. Scholey A, Ossoukhova A, Owen L, Ibarra A, Pipingas A, He K, et al. Effects of american ginseng (panax quinquefolius) on neurocognitive function: an acute, randomised, double-blind, placebo-controlled, crossover study. Psychopharmacology (Berl) 2010;212:345-56.  https://doi.org/10.1007/s00213-010-1964-y
  31. Bell L, Whyte A, Duysburgh C, Marzorati M, Van den Abbeele P, Cozannet R Le, et al. A randomized, placebo-controlled trial investigating the acute and chronic benefits of american ginseng (cereboost(r)) on mood and cognition in healthy young adults, including in vitro investigation of gut microbiota changes as a possible mechanism of action. Eur J Nutr 2022;61:413-28. https://doi.org/10.1007/s00394-021-02654-5
  32. Ellis JM, Reddy P. Effects of panax ginseng on quality of life. Ann Pharmacother 2002;36:375-9.  https://doi.org/10.1345/aph.1A245
  33. Reay JL, Kennedy DO, Scholey AB. Effects of panax ginseng, consumed with and without glucose, on blood glucose levels and cognitive performance during sustained 'mentally demanding' tasks. J Psychopharmacol 2006;20:771-81.  https://doi.org/10.1177/0269881106061516
  34. White DJ, Camfield DA, Ossoukhova A, Savage K, Le Cozannet R, FancaBerthon P, et al. Effects of panax quinquefolius (american ginseng) on the steady state visually evoked potential during cognitive performance. Hum Psychopharmacol 2020;35:1-6. 
  35. Ossoukhova A, Owen L, Savage K, Meyer M, Ibarra A, Roller M, et al. Improved working memory performance following administration of a single dose of american ginseng (panax quinquefolius l.) to healthy middle-age adults. Hum Psychopharmacol 2015;30:108-22.  https://doi.org/10.1002/hup.2463
  36. Namgung E, Kim J, Jeong H, Hong G, Kim M, Kim RY, et al. Effects of Korean red ginseng on human gray matter volume and cognitive function: a voxel-based morphometry study. Hum Psychopharmacol 2021;36:e2767. 
  37. Baek JH, Heo JY, Fava M, Mischoulon D, Choi KW, Na EJ, et al. Effect of Korean red ginseng in individuals exposed to high stress levels: a 6-week, double-blind, randomized, placebo-controlled trial. J Ginseng Res 2019;43:402-7.  https://doi.org/10.1016/j.jgr.2018.03.001
  38. Heo JH, Lee ST, Oh MJ, Park HJ, Shim JY, Chu K, et al. Improvement of cognitive deficit in alzheimer's disease patients by long term treatment with Korean red ginseng. J Ginseng Res 2011;35:457-61.  https://doi.org/10.5142/jgr.2011.35.4.457
  39. Lee ST, Chu K, Sim JY, Heo JH, Kim M. Panax ginseng enhances cognitive performance in alzheimer disease. Alzheimer Dis Assoc Disord 2008;22:222-6.  https://doi.org/10.1097/WAD.0b013e31816c92e6
  40. Beckhauser TF, Francis-Oliveira J, De Pasquale R. Reactive oxygen species: physiological and physiopathological effects on synaptic plasticity. J Exp Neurosci 2016;10:23-48. 
  41. Ju S, Seo JY, Lee SK, Oh J, Kim JS. Oral administration of hydrolyzed red ginseng extract improves learning and memory capability of scopolamine-treated c57bl/6j mice via upregulation of nrf2-mediated antioxidant mechanism. J Ginseng Res 2021;45:108-18.  https://doi.org/10.1016/j.jgr.2019.12.005
  42. Flanagan SD, DuPont WH, Caldwell LK, Hardesty VH, Barnhart EC, Beeler MK, et al. The effects of a Korean ginseng, ginst15, on hypo-pituitary-adrenal and oxidative activity induced by intense work stress. J Med Food 2018;21:104-12.  https://doi.org/10.1089/jmf.2017.0071
  43. Kim HG, Yoo SR, Park HJ, Lee NH, Shin JW, Sathyanath R, et al. Antioxidant effects of panax ginseng c.A. Meyer in healthy subjects: a randomized, placebo-controlled clinical trial. Food Chem Toxicol 2011;49:2229-35.  https://doi.org/10.1016/j.fct.2011.06.020
  44. Kim JY, Park JY, Kang HJ, Kim OY, Lee JH. Beneficial effects of Korean red ginseng on lymphocyte DNA damage, antioxidant enzyme activity, and ldl oxidation in healthy participants: a randomized, double-blind, placebo-controlled trial. Nutr J 2012;11:47. 
  45. Chung TH, Kim JH, Seol SY, Kim YJ, Lee YJ. The effects of Korean red ginseng on biological aging and antioxidant capacity in postmenopausal women: a double-blind randomized controlled study. Nutrients 2021;13. 
  46. Seo SK, Hong Y, Yun BH, Chon SJ, Jung YS, Park JH, et al. Antioxidative effects of Korean red ginseng in postmenopausal women: a double-blind randomized controlled trial. J Ethnopharmacol 2014;154:753-7.  https://doi.org/10.1016/j.jep.2014.04.051
  47. Szeto YT, Ys Sin, Pak SC, Kalle W. American ginseng tea protects cellular DNA within 2 h from consumption: results of a pilot study in healthy human volunteers. Int J Food Sci Nutr 2015;66:815-8.  https://doi.org/10.3109/09637486.2015.1088937
  48. Kim SY, Seo SK, Choi YM, Jeon YE, Lim KJ, Cho S, et al. Effects of red ginseng supplementation on menopausal symptoms and cardiovascular risk factors in postmenopausal women: a double-blind randomized controlled trial. Menopause 2012;19:461-6.  https://doi.org/10.1097/gme.0b013e3182325e4b
  49. Baran TM, Zhang Z, Anderson AJ, McDermott K, Lin F. Brain structural connectomes indicate shared neural circuitry involved in subjective experience of cognitive and physical fatigue in older adults. Brain Imaging Behav 2020;14:2488-99.  https://doi.org/10.1007/s11682-019-00201-9
  50. Ma J, Chen H, Liu X, Zhang L, Qiao D. Exercise-induced fatigue impairs bidirectional corticostriatal synaptic plasticity. Front Cell Neurosci 2018;12:14. 
  51. Dobryakova E, DeLuca J, Genova HM, Wylie GR. Neural correlates of cognitive fatigue: cortico-striatal circuitry and effort-reward imbalance. J Int Neuropsychol Soc 2013;19:849-53.  https://doi.org/10.1017/S1355617713000684
  52. van der Schaaf ME, Roelofs K, de Lange FP, Geurts DEM, van der Meer JWM, Knoop H, et al. Fatigue is associated with altered monitoring and preparation of physical effort in patients with chronic fatigue syndrome. Biol Psychiatry Cogn Neurosci Neuroimaging 2018;3:392-404. 
  53. Bower JE. Cancer-related fatigue-mechanisms, risk factors, and treatments. Nat Rev Clin Oncol 2014;11:597-609.  https://doi.org/10.1038/nrclinonc.2014.127
  54. Lee CH, Giuliani F. The role of inflammation in depression and fatigue. Front Immunol 2019;10:1696. 
  55. Lee N, Lee SH, Yoo HR, Yoo HS. Anti-fatigue effects of enzyme-modified ginseng extract: a randomized, double-blind, placebo-controlled trial. J Altern Complement Med 2016;22:859-64.  https://doi.org/10.1089/acm.2016.0057
  56. Lee B, Sur B, Oh S. Neuroprotective effect of Korean red ginseng against single prolonged stress-induced memory impairments and inflammation in the rat brain associated with bdnf expression. J Ginseng Res 2022;46:435-43.  https://doi.org/10.1016/j.jgr.2021.08.002
  57. Spreng RN, Dimas E, Mwilambwe-Tshilobo L, Dagher A, Koellinger P, Nave G, et al. The default network of the human brain is associated with perceived social isolation. Nat Commun 2020;11:6393. 
  58. Kitaoka K, Uchida K, Okamoto N, Chikahisa S, Miyazaki T, Takeda E, et al. Fermented ginseng improves the first-night effect in humans. Sleep 2009;32:413-21.  https://doi.org/10.1093/sleep/32.3.413
  59. Dang H, Chen Y, Liu X, Wang Q, Wang L, Jia W, et al. Antidepressant effects of ginseng total saponins in the forced swimming test and chronic mild stress models of depression. Prog Neuro-Psychopharmacol Biol Psychiatry 2009;33:1417-24.  https://doi.org/10.1016/j.pnpbp.2009.07.020
  60. Yoon J, Park B, Hong KW. The effects of Korean red ginseng on stress-related neurotransmitters and gene expression: a randomized, double-blind, placebo-controlled trial. Journal of Ginseng Research 2023;47:766-72.  https://doi.org/10.1016/j.jgr.2023.08.001
  61. Dewanjee S, Chakraborty P, Bhattacharya H, Chacko L, Singh B, Chaudhary A, et al. Altered glucose metabolism in alzheimer's disease: role of mitochondrial dysfunction and oxidative stress. Free Radic Biol Med 2022;193:134-57.  https://doi.org/10.1016/j.freeradbiomed.2022.09.032
  62. Choi HS, Kim S, Kim MJ, Kim MS, Kim J, Park CW, et al. Efficacy and safety of panax ginseng berry extract on glycemic control: a 12-wk randomized, double-blind, and placebo-controlled clinical trial. J Ginseng Res 2018;42:90-7.  https://doi.org/10.1016/j.jgr.2017.01.003
  63. Liang MT, Lau WY, Sokmen B, Spalding TW, Chuang WJ. Effects of panax notoginseng (Chinese ginseng) and acute exercise on postprandial glycemia in non-diabetic adults. J Complement Integr Med 2012;8. 
  64. De Souza LR, Jenkins AL, Sievenpiper JL, Jovanovski E, Rahelic D, Vuksan V. Korean red ginseng (panax ginseng c.A. Meyer) root fractions: differential effects on postprandial glycemia in healthy individuals. J Ethnopharmacol 2011;137:245-50.  https://doi.org/10.1016/j.jep.2011.05.015
  65. Vuksan V, Stavro MP, Sievenpiper JL, Koo VY, Wong E, Beljan-Zdravkovic U, et al. American ginseng improves glycemia in individuals with normal glucose tolerance: effect of dose and time escalation. J Am Coll Nutr 2000;19:738-44.  https://doi.org/10.1080/07315724.2000.10718073
  66. Badji A, Sabra D, Bherer L, Cohen-Adad J, Girouard H, Gauthier CJ. Arterial stiffness and brain integrity: a review of mri findings. Ageing Res Rev 2019;53:100907. 
  67. Jovanovski E, Jenkins A, Dias AG, Peeva V, Sievenpiper J, Arnason JT, et al. Effects of Korean red ginseng (panax ginseng c.A. Mayer) and its isolated ginsenosides and polysaccharides on arterial stiffness in healthy individuals. Am J Hypertens 2010;23:469-72.  https://doi.org/10.1038/ajh.2010.5
  68. Jovanovski E, Bateman EA, Bhardwaj J, Fairgrieve C, Mucalo I, Jenkins AL, et al. Effect of rg3-enriched Korean red ginseng (panax ginseng) on arterial stiffness and blood pressure in healthy individuals: a randomized controlled trial. J Am Soc Hypertens 2014;8:537-41.  https://doi.org/10.1016/j.jash.2014.04.004
  69. Lee M, Lee SH, Kim MS, Ahn KS, Kim M. Effect of lactobacillus dominance modified by Korean red ginseng on the improvement of alzheimer's disease in mice. J Ginseng Res 2022;46:464-72.  https://doi.org/10.1016/j.jgr.2021.11.001
  70. Yu S, Chun E, Ji Y, Lee YJ, Jin M. Effects of red ginseng on gut, microbiota, and brain in a mouse model of post-infectious irritable bowel syndrome. J Ginseng Res 2021;45:706-16.  https://doi.org/10.1016/j.jgr.2021.03.008
  71. Kim YK, Yum KS. Effects of red ginseng extract on gut microbial distribution. J Ginseng Res 2022;46:91-103.  https://doi.org/10.1016/j.jgr.2021.04.005
  72. Murciano-Brea J, Garcia-Montes M, Geuna S, Herrera-Rincon C. Gut microbiota and neuroplasticity. Cells 2021;10. 
  73. Bui BP, Nguyen PL, Do HTT, Cho J. Anxiolytic effect of Korean red ginseng through upregulation of serotonin and gaba transmission and bdnf expression in immobilized mice. J Ginseng Res 2022;46:819-29.  https://doi.org/10.1016/j.jgr.2022.07.007
  74. Chou TW, Huang HS, Panyod S, Huang YJ, Sheen LY. Korean red ginseng water extract produces antidepressant-like effects through involving monoamines and brain-derived neurotrophic factor in rats. J Ginseng Res 2023;47:552-60.  https://doi.org/10.1016/j.jgr.2023.01.003
  75. Lee B, Sur B, Lee H, Oh S. Korean red ginseng prevents posttraumatic stress disorder-triggered depression-like behaviors in rats via activation of the serotonergic system. J Ginseng Res 2020;44:644-54.  https://doi.org/10.1016/j.jgr.2019.09.005
  76. Lee BR, Lee JH, Ko YH, Seo JY, Hur KH, Kim YJ, et al. Korean red ginseng reduces chronic social defeat stress-induced mood disorders via n-methyl-d-aspartate receptor modulation in mice. J Ginseng Res 2021;45:254-63.  https://doi.org/10.1016/j.jgr.2019.11.003
  77. Kim DG, Kim HJ, Choi SH, Nam SM, Kim HC, Rhim H, et al. Gintonin influences the morphology and motility of adult brain neurons via lpa receptors. J Ginseng Res 2021;45:401-7.  https://doi.org/10.1016/j.jgr.2020.06.003
  78. Huang Q, Lou T, Lu J, Wang M, Chen X, Xue L, et al. Major ginsenosides from panax ginseng promote aerobic cellular respiration and sirt1-mediated mitochondrial biosynthesis in cardiomyocytes and neurons. J Ginseng Res 2022;46:759-70.  https://doi.org/10.1016/j.jgr.2022.02.002
  79. Lee A, Kwon OW, Jung KR, Song GJ, Yang HJ. The effects of Korean red ginseng-derived components on oligodendrocyte lineage cells: distinct facilitatory roles of the non-saponin and saponin fractions, and rb1, in proliferation, differentiation and myelination. J Ginseng Res 2022;46:104-14.  https://doi.org/10.1016/j.jgr.2021.04.007
  80. Mijan MA, Kim JY, Moon SY, Choi SH, Nah SY, Yang HJ. Gintonin enhances proliferation, late stage differentiation, and cell survival from endoplasmic reticulum stress of oligodendrocyte lineage cells. Front Pharmacol 2019;10:1211. 
  81. Kwon OW, Kim D, Koh E, Yang HJ. Korean red ginseng and rb1 facilitate remyelination after cuprizone diet-induced demyelination. J Ginseng Res 2023;47:319-28.  https://doi.org/10.1016/j.jgr.2022.09.005
  82. Lee MJ, Choi JH, Kwon TW, Jo HS, Ha Y, Nah SY, et al. Korean red ginseng extract ameliorates demyelination by inhibiting infiltration and activation of immune cells in cuprizone-administrated mice. J Ginseng Res 2023;47:672-80.  https://doi.org/10.1016/j.jgr.2023.05.001
  83. Park J, Lee M, Kim M, Moon S, Kim S, Kim S, et al. Prophylactic role of Korean red ginseng in astrocytic mitochondrial biogenesis through hif-1alpha. J Ginseng Res 2022;46:408-17.  https://doi.org/10.1016/j.jgr.2021.07.003
  84. Zheng QL, Zhu HY, Xu X, Chu SF, Cui LY, Dong YX, et al. Korean red ginseng alleviate depressive disorder by improving astrocyte gap junction function. J Ethnopharmacol 2021;281:114466. 
  85. Saba E, Jeong DH, Roh SS, Kim SH, Kim SD, Kim HK, et al. Black ginseng-enriched chong-myung-tang extracts improve spatial learning behavior in rats and elicit anti-inflammatory effects in vitro. J Ginseng Res 2017;41:151-8.  https://doi.org/10.1016/j.jgr.2016.02.004
  86. Shin YJ, Lee DY, Kim JY, Heo K, Shim JJ, Lee JL, et al. Effect of fermented red ginseng on gut microbiota dysbiosis- or immobilization stress-induced anxiety, depression, and colitis in mice. J Ginseng Res 2023;47:255-64.  https://doi.org/10.1016/j.jgr.2022.08.004
  87. Rossi MJ, Pekkurnaz G. Powerhouse of the mind: mitochondrial plasticity at the synapse. Curr Opin Neurobiol 2019;57:149-55. https://doi.org/10.1016/j.conb.2019.02.001
  88. Zhou P, Xie W, Sun Y, Dai Z, Li G, Sun G, et al. Ginsenoside rb1 and mitochondria: a short review of the literature. Mol Cell Probes 2019;43:1-5.  https://doi.org/10.1016/j.mcp.2018.12.001
  89. Huang Q, Gao S, Zhao D, Li X. Review of ginsenosides targeting mitochondrial function to treat multiple disorders: current status and perspectives. J Ginseng Res 2021;45:371-9.  https://doi.org/10.1016/j.jgr.2020.12.004
  90. Xu YP, Cui XY, Liu YT, Cui SY, Zhang YH. Ginsenoside rg1 promotes sleep in rats by modulating the noradrenergic system in the locus coeruleus and serotonergic system in the dorsal raphe nucleus. Biomed Pharmacother 2019;116:109009. 
  91. Cui J, Jiang L, Xiang H. Ginsenoside rb3 exerts antidepressant-like effects in several animal models. J Psychopharmacol 2012;26:697-713.  https://doi.org/10.1177/0269881111415735
  92. Wang GL, He ZM, Zhu HY, Gao YG, Zhao Y, Yang H, et al. Involvement of serotonergic, noradrenergic and dopaminergic systems in the antidepressant-like effect of ginsenoside rb1, a major active ingredient of panax ginseng c.A. Meyer. J Ethnopharmacol 2017;204:118-24.  https://doi.org/10.1016/j.jep.2017.04.009
  93. Chen H, Shen J, Li H, Zheng X, Kang D, Xu Y, et al. Ginsenoside rb1 exerts neuroprotective effects through regulation of lactobacillus helveticus abundance and gaba(a) receptor expression. J Ginseng Res 2020;44:86-95.  https://doi.org/10.1016/j.jgr.2018.09.002
  94. Liu Y, Zong X, Huang J, Guan Y, Li Y, Du T, et al. Ginsenoside rb1 regulates prefrontal cortical gabaergic transmission in mptp-treated mice. Aging (Albany NY) 2019;11:5008-34. 
  95. Shao J, Zheng X, Qu L, Zhang H, Yuan H, Hui J, et al. Ginsenoside rg5/rk1 ameliorated sleep via regulating the gabaergic/serotoninergic signaling pathway in a rodent model. Food Funct 2020;11:1245-57.  https://doi.org/10.1039/C9FO02248A
  96. Wang G, An T, Lei C, Zhu X, Yang L, Zhang L, et al. Antidepressant-like effect of ginsenoside rb1 on potentiating synaptic plasticity via the mir-134-mediated bdnf signaling pathway in a mouse model of chronic stress-induced depression. J Ginseng Res 2022;46:376-86.  https://doi.org/10.1016/j.jgr.2021.03.005
  97. Chu SF, Zhang Z, Zhou X, He WB, Chen C, Luo P, et al. Ginsenoside rg1 protects against ischemic/reperfusion-induced neuronal injury through mir-144/nrf2/are pathway. Acta Pharmacol Sin 2019;40:13-25.  https://doi.org/10.1038/s41401-018-0154-z
  98. Shi R, Zhang S, Cheng G, Yang X, Zhao N, Chen C. Ginsenoside rg1 and acori graminei rhizoma attenuates neuron cell apoptosis by promoting the expression of mir-873-5p in alzheimer's disease. Neurochem Res 2018;43:1529-38.  https://doi.org/10.1007/s11064-018-2567-y
  99. Fu YY, Cen JK, Song HL, Song SY, Zhang ZJ, Lu HJ. Ginsenoside rh2 ameliorates neuropathic pain by inhibition of the mirna21-tlr8-mitogen-activated protein kinase axis. Mol Pain 2022;18:17448069221126078. 
  100. Fanibunda SE, Deb S, Maniyadath B, Tiwari P, Ghai U, Gupta S, et al. Serotonin regulates mitochondrial biogenesis and function in rodent cortical neurons via the 5-ht(2a) receptor and sirt1-pgc-1alpha axis. Proc Natl Acad Sci U S A 2019;116:11028-37.  https://doi.org/10.1073/pnas.1821332116
  101. Wang Q, Zhang H, Xu H, Guo D, Shi H, Li Y, et al. 5-htr3 and 5-htr4 located on the mitochondrial membrane and functionally regulated mitochondrial functions. Sci Rep 2016;6:37336. 
  102. Wang CS, Kavalali ET, Monteggia LM. Bdnf signaling in context: from synaptic regulation to psychiatric disorders. Cell 2022;185:62-76.  https://doi.org/10.1016/j.cell.2021.12.003
  103. Jiang N, Wang H, Li C, Zeng G, Lv J, Wang Q, et al. The antidepressant-like effects of the water extract of panax ginseng and polygala tenuifolia are mediated via the bdnf-trkb signaling pathway and neurogenesis in the hippocampus. J Ethnopharmacol 2021;267:113625. 
  104. Wang G, Lei C, Tian Y, Wang Y, Zhang L, Zhang R. Rb1, the primary active ingredient in panax ginseng c.A. Meyer, exerts antidepressant-like effects via the bdnf-trkb-creb pathway. Front Pharmacol 2019;10:1034. 
  105. Feng H, Xue M, Deng H, Cheng S, Hu Y, Zhou C. Ginsenoside and its therapeutic potential for cognitive impairment. Biomolecules 2022;12. 
  106. Mink JW, Blumenschine RJ, Adams DB. Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis. Am J Physiol 1981; 241:R203-12. 
  107. Cobley JN, Fiorello ML, Bailey DM. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol 2018;15:490-503.  https://doi.org/10.1016/j.redox.2018.01.008
  108. He B, Chen D, Zhang X, Yang R, Yang Y, Chen P, et al. Oxidative stress and ginsenosides: an update on the molecular mechanisms. Oxid Med Cell Longev 2022;2022:9299574. 
  109. Wang D, Zhao S, Pan J, Wang Z, Li Y, Xu X, et al. Ginsenoside rb1 attenuates microglia activation to improve spinal cord injury via microrna-130b-5p/tlr4/nf-kappab axis. J Cell Physiol 2021;236:2144-55.  https://doi.org/10.1002/jcp.30001
  110. Sampaio-Baptista C, Johansen-Berg H. White matter plasticity in the adult brain. Neuron 2017;96:1239-51.  https://doi.org/10.1016/j.neuron.2017.11.026
  111. McKenzie IA, Ohayon D, Li H, de Faria JP, Emery B, Tohyama K, et al. Motor skill learning requires active central myelination. Science 2014;346:318-22.  https://doi.org/10.1126/science.1254960
  112. Makinodan M, Rosen KM, Ito S, Corfas G. A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science 2012;337:1357-60.  https://doi.org/10.1126/science.1220845
  113. Liu L, Du X, Yang Q, Li M, Ran Q, Liu Q, et al. Ginsenoside rg1 promotes remyelination and functional recovery in demyelinating disease by enhancing oligodendrocyte precursor cells-mediated myelin repair. Phytomedicine 2022;106:154309. 
  114. Chen Y, Li YY, Wang S, Zhou T, Chen NH, Yuan YH. Ginsenoside rg1 plays a neuroprotective role in regulating the iron-regulated proteins and against lipid peroxidation in oligodendrocytes. Neurochem Res 2022;47:1721-35.  https://doi.org/10.1007/s11064-022-03564-6
  115. Lovatt D, Sonnewald U, Waagepetersen HS, Schousboe A, He W, Lin JH, et al. The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J Neurosci 2007;27:12255-66.  https://doi.org/10.1523/JNEUROSCI.3404-07.2007
  116. Morales I, Sanchez A, Puertas-Avendano R, Rodriguez-Sabate C, Perez-Barreto A, Rodriguez M. Neuroglial transmitophagy and Parkinson's disease. Glia 2020;68:2277-99.  https://doi.org/10.1002/glia.23839
  117. Hayakawa K, Esposito E, Wang X, Terasaki Y, Liu Y, Xing C, et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature 2016;535:551-5.  https://doi.org/10.1038/nature18928
  118. Jin C, Wang ZZ, Zhou H, Lou YX, Chen J, Zuo W, et al. Ginsenoside rg1-induced antidepressant effects involve the protection of astrocyte gap junctions within the prefrontal cortex. Prog Neuro-Psychopharmacol Biol Psychiatry 2017;75:183-91.  https://doi.org/10.1016/j.pnpbp.2016.09.006
  119. Lou YX, Wang ZZ, Xia CY, Mou Z, Ren Q, Liu DD, et al. The protective effect of ginsenoside rg1 on depression may benefit from the gap junction function in hippocampal astrocytes. Eur J Pharmacol 2020;882:173309. 
  120. Ni XC, Wang HF, Cai YY, Yang D, Alolga RN, Liu B, et al. Ginsenoside rb1 inhibits astrocyte activation and promotes transfer of astrocytic mitochondria to neurons against ischemic stroke. Redox Biol 2022;54:102363. 
  121. Calabrese F, Rossetti AC, Racagni G, Gass P, Riva MA, Molteni R. Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity. Front Cell Neurosci 2014;8:430. 
  122. Park SM, Choi MS, Sohn NW, Shin JW. Ginsenoside rg3 attenuates microglia activation following systemic lipopolysaccharide treatment in mice. Biol Pharm Bull 2012;35:1546-52.  https://doi.org/10.1248/bpb.b12-00393
  123. Madhi I, Kim JH, Shin JE, Kim Y. Ginsenoside re exhibits neuroprotective effects by inhibiting neuroinflammation via camk/mapk/nf-kappab signaling in microglia. Mol Med Rep 2021;24. 
  124. Jung JS, Shin JA, Park EM, Lee JE, Kang YS, Min SW, et al. Anti-inflammatory mechanism of ginsenoside rh1 in lipopolysaccharide-stimulated microglia: critical role of the protein kinase a pathway and hemeoxygenase-1 expression. J Neurochem 2010;115:1668-80.  https://doi.org/10.1111/j.1471-4159.2010.07075.x
  125. Shi DD, Huang YH, Lai CSW, Dong CM, Ho LC, Li XY, et al. Ginsenoside rg1 prevents chemotherapy-induced cognitive impairment: associations with microglia-mediated cytokines, neuroinflammation, and neuroplasticity. Mol Neurobiol 2019;56:5626-42.  https://doi.org/10.1007/s12035-019-1474-9
  126. Ke L, Guo W, Xu J, Zhang G, Wang W, Huang W. Ginsenoside rb1 attenuates activated microglia-induced neuronal damage. Neural Regen Res 2014;9:252-9.  https://doi.org/10.4103/1673-5374.128217
  127. Lee KW, Jung SY, Choi SM, Yang EJ. Effects of ginsenoside re on lps-induced inflammatory mediators in bv2 microglial cells. BMC Complement Altern Med 2012;12:196. 
  128. Damiani F, Cornuti S, Tognini P. The gut-brain connection: exploring the influence of the gut microbiota on neuroplasticity and neurodevelopmental disorders. Neuropharmacology 2023;231:109491. 
  129. Ajamu SO, Fenner RC, Grigorova YN, Cezayirli D, Morrell CH, Lakatta EG, et al. Association of central arterial stiffness with hippocampal blood flow and n-acetyl aspartate concentration in hypertensive adult dahl salt sensitive rats. J Hypertens 2021;39:2113-21.  https://doi.org/10.1097/HJH.0000000000002899
  130. Yi YS. New mechanisms of ginseng saponin-mediated anti-inflammatory action via targeting canonical inflammasome signaling pathways. J Ethnopharmacol 2021;278:114292. 
  131. Song L, Pei L, Yao S, Wu Y, Shang Y. Nlrp3 inflammasome in neurological diseases, from functions to therapies. Front Cell Neurosci 2017;11:63. 
  132. Hu Q, He G, Zhao J, Soshilov A, Denison MS, Zhang A, et al. Ginsenosides are novel naturally-occurring aryl hydrocarbon receptor ligands. PLoS One 2013;8:e66258. 
  133. Nah SY. Gintonin: a novel ginseng-derived ligand that targets g protein- coupled lysophosphatidic acid receptors. Curr Drug Targets 2012;13:1659-64.  https://doi.org/10.2174/138945012803529947
  134. Hwang SH, Shin EJ, Shin TJ, Lee BH, Choi SH, Kang J, et al. Gintonin, a ginseng-derived lysophosphatidic acid receptor ligand, attenuates alzheimer's diseaserelated neuropathies: involvement of non-amyloidogenic processing. J Alzheimers Dis 2012;31:207-23. https://doi.org/10.3233/JAD-2012-120439