참고문헌
- H.D. Matthews, N.P. Gillett, P.A. Stott, K. Zickfeld, The proportionality of global warming to cumulative carbon emissions, Nature, 459 (2009) 829-832. https://doi.org/10.1038/nature08047
- K.O. Yoro, M.O. Daramola, Chapter 1 - CO2 emission sources, greenhouse gases, and the global warming effect, in: M.R. Rahimpour, M. Farsi, M.A. Makarem (Eds.) Advances in Carbon Capture, Woodhead Publishing, 2020, 3-28.
- M.R. Anisur, M.H. Mahfuz, M.A. Kibria, R. Saidur, I.H.S.C. Metselaar, T.M.I. Mahlia, Curbing global warming with phase change materials for energy storage, Renewable and Sustainable Energy Reviews, 18 (2013) 23-30. https://doi.org/10.1016/j.rser.2012.10.014
- M. Gutsch, J. Leker, Global warming potential of lithium-ion battery energy storage systems: A review, Journal of Energy Storage, 52 (2022) 105030.
- M.M. Thackeray, C. Wolverton, E.D. Isaacs, Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries, Energy & Environmental Science, 5 (2012) 7854-7863. https://doi.org/10.1039/c2ee21892e
- Y. Wu, W. Wang, J. Ming, M. Li, L. Xie, X. He, J. Wang, S. Liang, Y. Wu, An exploration of new energy storage system: high energy density, high safety, and fast charging lithium ion battery, Advanced Functional Materials, 29 (2019) 1805978.
- F.A. Soto, A. Marzouk, F. El-Mellouhi, P.B. Balbuena, Understanding ionic diffusion through SEI components for lithium-ion and sodium-ion batteries: insights from first-principles calculations, Chemistry of Materials, 30 (2018) 3315-3322. https://doi.org/10.1021/acs.chemmater.8b00635
- S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, D.L. Wood, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling, Carbon, 105 (2016) 52-76. https://doi.org/10.1016/j.carbon.2016.04.008
- U.S. Meda, L. Lal, S. M, P. Garg, Solid electrolyte interphase (SEI), a boon or a bane for lithium batteries: A review on the recent advances, Journal of Energy Storage, 47 (2022) 103564.
- H. Cheng, J.G. Shapter, Y. Li, G. Gao, Recent progress of advanced anode materials of lithium-ion batteries, Journal of Energy Chemistry, 57 (2021) 451-468. https://doi.org/10.1016/j.jechem.2020.08.056
- S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries, Journal of Power Sources, 257 (2014) 421-443. https://doi.org/10.1016/j.jpowsour.2013.11.103
- J. Kalhoff, G.G. Eshetu, D. Bresser, S. Passerini, Safer electrolytes for lithium-ion batteries: state of the art and perspectives, ChemSusChem, 8 (2015) 2154-2175. https://doi.org/10.1002/cssc.201500284
- G. Xu, X. Shangguan, S. Dong, X. Zhou, G. Cui, Formulation of Blended-Lithium-Salt Electrolytes for Lithium Batteries, Angewandte Chemie International Edition, 59 (2020) 3400-3415. https://doi.org/10.1002/anie.201906494
- D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt, U. Heider, On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries, Electrochimica Acta, 47 (2002) 1423-1439. https://doi.org/10.1016/S0013-4686(01)00858-1
- L. Chen, K. Wang, X. Xie, J. Xie, Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries, Journal of Power Sources, 174 (2007) 538-543. https://doi.org/10.1016/j.jpowsour.2007.06.149
- L. Chen, K. Wang, X. Xie, J. Xie, Electrochemical and Solid-State Letters, 9 (2006) A512. https://doi.org/10.1149/1.2338771
- A.L. Michan, B.S. Parimalam, M. Leskes, R.N. Kerber, T. Yoon, C.P. Grey, B.L. Lucht, Chem. Mater., 28 (2016) 8149-8159. https://doi.org/10.1021/acs.chemmater.6b02282
- Y. Wang, S. Nakamura, K. Tasaki, P.B. Balbuena, Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: how does vinylene carbonate play its role as an electrolyte additive?, Journal of the American Chemical Society, 124 (2002) 4408-4421. https://doi.org/10.1021/ja017073i
- G. Seo, J. Ha, M. Kim, J. Park, J. Lee, E. Park, S. Bong, K. Lee, S.J. Kwon, S.P. Moon, J. Choi, J. Lee, Rapid determination of lithium-ion battery degradation: High C-rate LAM and calculated limiting LLI, Journal of Energy Chemistry, 67 (2022) 663-671.
- S.K. Heiskanen, J. Kim, B.L. Lucht, Generation and evolution of the solid electrolyte interphase of lithium-ion batteries, Joule, 3 (2019) 2322-2333. https://doi.org/10.1016/j.joule.2019.08.018
- T. Yoon, C.C. Nguyen, D.M. Seo, B.L. Lucht, Capacity fading mechanisms of silicon nanoparticle negative electrodes for lithium ion batteries, Journal of The Electrochemical Society, 162 (2015) A2325.
- Q. Huang, M.J. Loveridge, R. Genieser, M.J. Lain, R. Bhagat, Electrochemical evaluation and phase-related impedance studies on silicon-few layer graphene (FLG) composite electrode systems, Scientific Reports, 8 (2018) 1386.
- K. Ogata, S. Jeon, D.S. Ko, I.S. Jung, J.H. Kim, K. Ito, Y. Kubo, K. Takei, S. Saito, Y.H. Cho, H. Park, J. Jang, H.G. Kim, J.H. Kim, Y.S. Kim, W. Choi, M. Koh, K. Uosaki, S.G. Doo, Y. Hwang, S. Han, Evolving affinity between Coulombic reversibility and hysteretic phase transformations in nano-structured silicon-based lithium-ion batteries, Nature Communications, 9 (2018) 479.
- X. Chen, X. Wang, D. Fang, A review on C1s XPS-spectra for some kinds of carbon materials, Fullerenes, Nanotubes and Carbon Nanostructures, 28 (2020) 1048-1058. https://doi.org/10.1080/1536383X.2020.1794851
- S. Leroy, F. Blanchard, R. Dedryvere, H. Martinez, B. Carre, D. Lemordant, D. Gonbeau, Surface film formation on a graphite electrode in Li-ion batteries: AFM and XPS study, Surface and Interface Analysis, 37 (2005) 773-781. https://doi.org/10.1002/sia.2072
- C. Xu, F. Lindgren, B. Philippe, M. Gorgoi, F. Bjorefors, K. Edstrom, T. Gustafsson, Improved performance of the silicon anode for li-ion batteries: understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive, Chemistry of Materials, 27 (2015) 2591-2599. https://doi.org/10.1021/acs.chemmater.5b00339
- N.A. Nebogatikova, I.V. Antonova, V.Y. Prinz, I.I. Kurkina, V.I. Vdovin, G.N. Aleksandrov, V.B. Timofeev, S.A. Smagulova, E.R. Zakirov, V.G. Kesler, Fluorinated graphene dielectric films obtained from functionalized graphene suspension: preparation and properties, Physical Chemistry Chemical Physics, 17 (2015) 13257-13266. https://doi.org/10.1039/C4CP04646C
- L. El Ouatani, R. Dedryvere, C. Siret, P. Biensan, D. Gonbeau, Effect of vinylene carbonate additive in li-ion batteries: comparison of LiCoO2 / C, LiFePO4 / C, and LiCoO2 /Li4Ti5O12 Systems, Journal of The Electrochemical Society, 156 (2009) A468.
- L. Martin, H. Martinez, M. Ulldemolins, B. Pecquenard, F. Le Cras, Evolution of the Si electrode/electrolyte interface in lithium batteries characterized by XPS and AFM techniques: The influence of vinylene carbonate additive, Solid State Ionics, 215 (2012) 36-44.
- G.D. Soraru, G. D'Andrea, A. Glisenti, XPS characterization of gel-derived silicon oxycarbide glasses, Materials Letters, 27 (1996) 1-5.
- J. Shin, T.H. Kim, Y. Lee, E. Cho, Key functional groups defining the formation of Si anode solid-electrolyte interphase towards high energy density Li-ion batteries, Energy Storage Materials, 25 (2020) 764-781. https://doi.org/10.1016/j.ensm.2019.09.009
- Y. Qian, P. Niehoff, M. Borner, M. Grutzke, X. Monnighoff, P. Behrends, S. Nowak, M. Winter, F.M. Schappacher, Influence of electrolyte additives on the cathode electrolyte interphase (CEI) formation on LiNi1/3Mn1/3Co1/3O2 in half cells with Li metal counter electrode, Journal of Power Sources, 329 (2016) 31-40. https://doi.org/10.1016/j.jpowsour.2016.08.023
- H. Yoshida, T. Fukunaga, T. Hazama, M. Terasaki, M. Mizutani, M. Yamachi, Degradation mechanism of alkyl carbonate solvents used in lithium-ion cells during initial charging, Journal of Power Sources, 68 (1997) 311-315. https://doi.org/10.1016/S0378-7753(97)02635-9
- B. Strehle, S. Solchenbach, M. Metzger, K.U. Schwenke, H.A. Gasteiger, The effect of CO2 on alkyl carbonate trans esterification during formation of graphite electrodes in Li-ion batteries, Journal of The Electrochemical Society, 164 (2017) A2513.
- B. Ravdel, K.M. Abraham, R. Gitzendanner, J. DiCarlo, B. Lucht, C. Campion, Thermal stability of lithium-ion battery electrolytes, Journal of Power Sources, 119-121 (2003) 805-810.