Acknowledgement
본 연구는 한국산업단지공단 (KICOX)의 재원으로 경기 반월시화 스마트그린 산업단지 공정혁신 시뮬레이션센터 구축 및 운영 사업의 지원을 받아 수행한 연구입니다 (No: SG20230101).
References
- Y.G. Zhao, Y.H. Liang, W. Zhou, Q.D. Qin, Q. C. Jiang, Effect of current pulse on the thermal fatigue behavior of cast hot work die steel, ISIJ international, 45 (2005) 410-412. https://doi.org/10.2355/isijinternational.45.410
- J.Y. Li, Y.L. Chen, J.H. Huo, Mechanism of improvement on strength and toughness of H13 die steel by nitrogen, Materials Science and Engineering: A, 640 (2015) 16-23. https://doi.org/10.1016/j.msea.2015.05.006
- X. Zhu, K. Zhang, W. Li, X. Jin, Effect of retained austenite stability and morphology on the hydrogen embrittlement susceptibility in quenching and partitioning treated steels, Materials Science and Engineering: A, 658 (2016) 400-408. https://doi.org/10.1016/j.msea.2016.02.026
- Y. Wang, K. Song, Y. Zhang, High-temperature softening mechanism and kinetic of 4Cr5MoSiV1 steel during tempering, Materials Research Express, 6 (2019) 096513.
- N. Mebarki, D. Delagnes, P. Lamesle, F. Delmas, C. Levaillant, Relationship between microstructure and mechanical properties of a 5% Cr tempered martensitic tool steel, Materials Science and Engineering: A, 387 (2004) 171-175.
- O. Barrau, C. Boher, R. Gras, F.R. Aria, Analysis of the friction and wear behaviour of hot work tool steel for forging, Wear, 255 (2003) 1444-1454. https://doi.org/10.1016/S0043-1648(03)00280-1
- L.H.S. Luong, T. Heijkoop, The influence of scale on friction in hot metal Working, Wear, 71 (1981) 93-102. https://doi.org/10.1016/0043-1648(81)90142-3
- Z. Y. Zhu, Data of hot working die steels, Mechanical Engineering Materials, 25 (2001) 36-40.
- M. Sawa, D.A. Rigney, Sliding behavior of dual-phase steels in vacuum and air, Wear, 119 (1987) 369-390. https://doi.org/10.1016/0043-1648(87)90042-1
- Y. Wang, T.Q. Lei, J.J. Liu, Tribo-metallographic behavior of high carbon steels in dry sliding II, Wear, 231 (1999) 12-19. https://doi.org/10.1016/S0043-1648(99)00116-7
- X.H. Cui, S.Q. Wang, M.X. Wei, Z.R. Yang, Wear characteristics of H13 steel with various tempered structures, Journal of Materials Engineering and Performance, 20 (2011) 1055-1062. https://doi.org/10.1007/s11665-010-9723-0
- N.B. Dhokey, S.S. Maske, P. Ghosh, Effect of tempering and cryogenic treatment on wear and mechanical properties of hot work tool steel, Materials Today: Proceedings, 43 (2021) 3006-3013. https://doi.org/10.1016/j.matpr.2021.01.361
- Z.Q. Cui, Y.C. Tan, Metal Science and Heat Treatment, Metallography and Heat Treatment, Machinery Industry Press: Beijing, (2008) 268-277.
- W. Q. Zhang, Phase transformation in solid metals and alloys, National defense Industry Press: Beijing, (2015), 95-102.
- A. Medvedeva, J. Bergstrob, S. Gunnarssona, J. Anderssona, High-temperature properties and microstructural stability of hot-work tool steels, Materials Science and Engineering: A, 52 (2009) 39-46.
- A. Ning, Y. Liu, R. Gao, S. Yue, M. Wang, H. Guo, Effect of tempering condition on microstructure, mechanical properties and precipitates in AISI H13 steel, JOM, 73 (2021) 2194-2202. https://doi.org/10.1007/s11837-021-04694-y
- A. Ning, S. Yue, R. Gao, L. Li, H. Guo, H, Influence of tempering time on the behavior of large carbides' coarsening in AISI H13 steel, Metals, 9(12) (2019) 1283.
- P. Michaud, D. Delagnes, P. Lamesle, M. H. Mathon, C. Levaillant, The effect of the addition of alloying elements on carbide precipitation and mechanical properties in 5% chromium martensitic steels, ACTA materialia, 55 (2007) 4877-4889. https://doi.org/10.1016/j.actamat.2007.05.004
- D.K. Prajapati, M. Tiwari, The correlation between friction coefficient and areal topography parameters for AISI 304 steel sliding against AISI 52100 steel, Friction, 9 (2021) 41-60. https://doi.org/10.1007/s40544-019-0323-1
- E. Guenther, M. Kahlert, M. Vollmer, T. Niendorf, C. Greiner, Tribological performance of additively manufactured aisi H13 steel in different surface conditions, Materials, 14 (2021) 928.
- J.F. Archard, Contact and rubbing of flat surfaces, Journal of Applied Physics, 24 (1953) 981-988. https://doi.org/10.1063/1.1721448
- M. Elhefnawey, G.L. Shuai, Z. Li, M. N. Alla, D.T. Zhang, L. Li, On dry sliding wear of ECAPed Al-Mg-Zn alloy: Wear rate and coefficient of friction relationship, Alexandria Engineering Journal, 60 (2021), 927-939. https://doi.org/10.1016/j.aej.2020.10.021
- X.B. Hu, L. Li, X.C. Wu, M. Zhang, Coarsening behavior of M23C6 carbides after ageing or thermal fatigue in AISI H13 steel with niobium, International Journal of Fatigue, 28 (2006) 175-182. https://doi.org/10.1016/j.ijfatigue.2005.06.042
- M. Ozer, Influence of heat treatments on microstructure and wear behavior of AISI H13 tool steel, Metallic Materials/Kovove Materialy, 60 (2022).
- I.M. Lifshitz, V.V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, Journal of Physics and Chemistry of Solids, 19 (1961) 35-50. https://doi.org/10.1016/0022-3697(61)90054-3
- C. Wagner, Theory of precipitate change by redissolution, Journal of The Electrochemical Society, 65 (1961) 581-591.
- S. Kahrobaee, H.N. Sahraei, I.A. Akhlaghi, Nondestructive characterization of microstructure and mechanical properties of heat treated H13 tool steel using magnetic hysteresis loop methodology, Research in Nondestructive Evaluation, 30 (2019) 303-315. https://doi.org/10.1080/09349847.2019.1574942
- R.L. Banerjee, X-Ray diffraction determination of retained austenite, Journal of Heat Treatment and Materials, 2 (1980) 147-149. https://doi.org/10.1007/BF02833231
- M. Avrami, Granulation, phase change, and microstructure kinetics of phase change, III, The Journal of Chemical Physics 9 (1941) 177-184. https://doi.org/10.1063/1.1750872
- Z. Zhang, D. Delagnes, G. Bernhart, Microstructure evolution of hot-work tool steels during tempering and definition of a kinetic law based on hardness measurements, Materials Science and Engineering: A, 380 (2004) 222-230. https://doi.org/10.1016/j.msea.2004.03.067