DOI QR코드

DOI QR Code

NCM 리튬 이온 배터리의 양극 표면 코팅물질에 따른 성능변화

Performance variation of Nickel-Cobalt-Manganese lithium-ion battery by cathode surface coating materials

  • 유진욱 (중앙대학교 융합공학부) ;
  • 표성규 (중앙대학교 융합공학부)
  • JinUk Yoo (Department of Integrative Engineering, Chung-Ang University) ;
  • Sung Gyu Pyo (Department of Integrative Engineering, Chung-Ang University)
  • 투고 : 2024.04.13
  • 심사 : 2024.04.20
  • 발행 : 2024.04.30

초록

Nickel-cobalt-manganese (NCM) lithium-ion batteries(LIBs) are increasingly prominent in the energy storage system due to their high energy density and cost-effectiveness. However, they face significant challenges, such as rapid capacity fading and structural instability during high-voltage operation cycles. Addressing these issues, numerous researchers have studied the enhancement of electrochemical performance through the coating of NCM cathode materials with substances like metal oxides, lithium composites, and polymers. Coating these cathode materials serves several critical functions: it acts as a protection barrier against electrolyte decomposition, mitigates the dissolution of transition metals, enhances the structural integrity of the electrode, and can even improve the ionic conductivity of the cathode. Ultimately, these improvements lead to better cycle stability, increased efficiency, and enhanced overall battery life, which are crucial for the advancement of NCM-based lithium-ion batteries in high-demand applications. So, this paper will review various cathode coating materials and examine the roles each plays in improving battery performance.

키워드

과제정보

이 논문은 2023년도 중앙대학교 연구장학기금 지원에 의한 것임.

참고문헌

  1. T. Kim, W. Song, D.Y. Son, L.K. Ono, Y. Qi, Lithium-ion batteries: outlook on present, future, and hybridized technologies, Journal of Materals Chemistry A, 7 (2019) 2942-2964.  https://doi.org/10.1039/C8TA10513H
  2. J.M. Lim, T. Hwang, D. Kim, M.S. Park, K. Cho, M. Cho, Intrinsic origins of crack generation in Ni-rich LiNi0.8Co0.1Mn0.1O2 layered oxide cathode material, Scientific Reports, 7 (2017) 39669. 
  3. J. Li, J. Fleetwood, W.B. Hawley, W. Kays, From materials to cell: state-of-the-art and prospective technologies for lithium-ion battery electrode processing, Chemical Reviews, 122 (2022) 903-956.  https://doi.org/10.1021/acs.chemrev.1c00565
  4. M.M. Thackeray, K. Amine, Layered Li-Ni-Mn-Co oxide cathodes, Nature Energy, 6 (2021) 933. 
  5. M. Dixit, B. Markovsky, F. Schipper, D. Aurbach, D.T. Major, Origin of structural degradation during cycling and low thermal stability of Ni-rich layered transition metal-based electrode materials, The Journal of Physical Chemistry C, 121 (2017) 22628-22636.  https://doi.org/10.1021/acs.jpcc.7b06122
  6. A. Fayez, Electric vehicles: benefits, challenges, and potential solutions for widespread adaptation, Applied Sciences, 13 (2023) 6016. 
  7. M. Arumugam, A reflection on lithium-ion battery cathode chemistry, Nature Communications, 11 (2020) 1-9.  https://doi.org/10.1038/s41467-019-13993-7
  8. L. Yang, K. Yang, J. Zheng, K. Xu, K. Amine, F. Pan, Harnessing the surface structure to enable high-performance cathode materials for lithium-ion batteries, Chemical Society Reviews, 49 (2020) 4667-4680.  https://doi.org/10.1039/D0CS00137F
  9. C. Li, H.P. Zhang, L.J. Fu, H. Liu, Y.P. Wu, E. Rahm, R. Holze, H.Q. Wu, Cathode materials modified by surface coating for lithium ion batteries, Electrochimica Acta, 51 (2006) 3872-3883.  https://doi.org/10.1016/j.electacta.2005.11.015
  10. J.C. Garcia, J. Bareño, J. Yan, G. Chen, A. Hauser, J.R. Croy, H. Iddir, Surface structure, morphology, and stability of Li(Ni1/3Mn1/3Co1/3)O2 Cathode Material, The Journal of Physical Chemistry C, 121 (2017) 8290-8299.  https://doi.org/10.1021/acs.jpcc.7b00896
  11. P. Guan, L. Zhou, Z. Yu, Y. Sun, Y. Liu, F. Wu, Y. Jiang, D. Chu, Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries, Journal of Energy Chemistry, 43 (2020) 220-235.  https://doi.org/10.1016/j.jechem.2019.08.022
  12. G. Kaurz, B.D. Gates, Review-surface coatings for cathodes in lithium ion batteries: from crystal structures to electrochemical performance, Journal of The Electrochemical Society, 169 (2022) 414-444. 
  13. T. Li, X. Li, Z. Wang, H. Guo, A short process for the efficient utilization of transition-metal chlorides in lithium-ion batteries: A case of Ni0.8Co0.1Mn0.1O1.1 and LiNi0.8Co0.1Mn0.1O2, Journal of Power Sources, 342 (2017) 495-503.  https://doi.org/10.1016/j.jpowsour.2016.12.095
  14. M. Yu, H. Patrick, J. Annette von, Y. Alexandre, Current Li-ion battery technologies in electric vehicles and opportunities for advancements, Energies, 12 (2019) 1074. 
  15. H. Wang, Y.I. Jang, B. Huang, D.R. Sadoway, Y.M. Chiang, TEM study of electrochemical cycling-induced damage and disorder in LiCoO2 cathodes for rechargeable lithium batteries, Journal of the Electrochemical Society, 146 (1999) 473-480.  https://doi.org/10.1149/1.1391631
  16. Y. Lyu, X. Wu, K. Wang, Z. Feng, T. Cheng, Y. Liu, M. Wang, R. Chen, L. Xu, J. Zhou, Y. Lu, B. Guo, An overview on the advances of LiCoO(2)Cathodes for Lithium-ion batteries, Advanced Energy Materials, (2020) 2000982-2001010. 
  17. B. Wang, F.l. Zhang, X.a. Zhou, P. Wang, J. Wang, H. Ding, H. Dong, W.b. Liang, N.s. Zhang, S.y. Li, Which of the nickel-rich NCM and NCA is structurally superior as a cathode material for lithium-ion batteries?, Journal of Materials Chemistry A, 9 (2021) 13540-13551.  https://doi.org/10.1039/D1TA01128F
  18. M.J. Christian, M. Alain, NCA, NCM811, and the route to Ni-richer lithium-ion batteries, Energies, 13 (2020) 6363. 
  19. H.J. Noh, S. Youn, C.S. Yoon, Y.K. Sun, Comparison of the structural and electrochemical properties of layered Li[NixCoyMnzz]O2 (x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries, Journal of Power Sources, 233 (2013) 121-130. https://doi.org/10.1016/j.jpowsour.2013.01.063
  20. R.A. Rodriguez, M.G. Montiel, N.D. S. Mohallem, Y.M. Laffita, L.A. Montoro, M.A. Santos, H.L. Ramirez, E.L. PerezCappe, The role of defects on the Jahn-teller effect and electrochemical charge storage in nanometric LiMn2O4 material, Solid State Ionics, 369 (2021) 115707. 
  21. M. Alain, M.J. Christian, Olivine positive electrodes for Li-ion batteries: status and perspectives, Batteries, 4 (2018) 39. 
  22. C. Yanbin, S. Shunlin, Z. Xuequan, L. Yafei, The challenges, solutions and development of high energy Ni-rich NCM/NCA LiB cathode materials, Journal of Physics: Conference Series, 1347 (2019) 012012. 
  23. W. Liu, P. Oh, X. Liu, M.J. Lee, W. Cho, S. Chae, Y. Kim, J. Cho, Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries, Angewandte Chemie International Edition, 54 (2015) 4440-4457.  https://doi.org/10.1002/anie.201409262
  24. Y.D. Xu, W. Xiang, Z.G. Wu, C.L. Xu, Y.C. Li, X.D. Guo, G.P. Lv, X. Peng, B.H. Zhong, Improving cycling performance and rate capability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode materials by Li4Ti5O12 coating, Electrochimica Acta, 268 (2018) 358-365.  https://doi.org/10.1016/j.electacta.2018.02.049
  25. H. Zhou, F. Zhou, Y. Liu, J. Kong, C. Jin, X. Wu, Enhanced electrochemical performances of LiNi0.8Co0.1Mn0.1O2 synthesized using the new green and low cost preparation process, Journal of Alloys & Compounds, 816 (2020) 152563. 
  26. L. Song, F. Tang, Z. Xiao, Z. Cao, H. Zhu, A. Li, Enhanced electrochemical properties of polyaniline-coated LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries, Journal of Electronic Materials, 47 (2018) 5896-5904. https://doi.org/10.1007/s11664-018-6453-9
  27. J. Duan, X. Tang, H. Dai, Y. Yang, W. Wu, X. Wei, Y. Huang, Building safe lithium-ion batteries for electric vehicles: a review, Electrochemical Energy Reviews, 3 (2020) 1-42.  https://doi.org/10.1007/s41918-019-00060-4
  28. S. Schweidler, L. de Biasi, G. Garcia, A. Mazilkin, P. Hartmann, T. Brezesinski, J. Janek, Investigation into mechanical degradation and fatigue of high-Ni NCM cathode material: a long-term cycling study of full cells, ACS Applied Energy Materials, 2 (2019) 7375-7393.  https://doi.org/10.1021/acsaem.9b01354
  29. L. Song, F. Tang, Z. Xiao, Z. Cao, H. Zhu, A. Li, Enhanced electrochemical properties of polyaniline-coated LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries, Journal of Electronic Materials, 47 (2018) 5896-5904.  https://doi.org/10.1007/s11664-018-6453-9
  30. X. Tan, M. Zhang, J. Li, D. Zhang, Y. Yan, Z. Li, Recent progress in coatings and methods of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode materials: A short review, Ceramics International, 46 (2020) 21888-21901. https://doi.org/10.1016/j.ceramint.2020.06.091
  31. J. Huang, X. Fang, Y. Wu, L. Zhou, Y. Wang, Y. Jin, W. Dang, L. Wu, Z. Rong, X. Chen, X. Tang, Enhanced electro chemical performance of LiNi0.8Co0.1Mn0.1O2 by surface modification with lithium-active MoO3, Journal of Electroanalytical Chemistry, 823 (2018) 359-367.  https://doi.org/10.1016/j.jelechem.2018.06.035
  32. W. Wang, L. Wu, Z. Li, K. Huang, J. Jiang, Z. Chen, X. Qi, H. Dou, X. Zhang, In situ tuning residual lithium compounds and constructing TiO2 coating for surface modification of a nickel-rich cathode toward high-energy lithium-ion batteries, ACS Applied Energy Materials, 3 (2020) 12423-12432.  https://doi.org/10.1021/acsaem.0c02406
  33. B. Ma, X. Huang, Z. Liu, X. Tian, Y. Zhou, Al2O3 coated single-crystalline hexagonal nanosheets of LiNi0.6Co0.2Mn0.2O2 cathode materials for the high-performance lithium-ion batteries, Journal of Materials Science, 57 (2022) 2857-2869. https://doi.org/10.1007/s10853-021-06726-z
  34. R.S. Negi, S.P. Culver, M. Wiche, S. Ahmed, K. Volz, M.T. Elm, Optimized atomic layer deposition of homogeneous, conductive Al2O3 coatings for high-nickel NCM containing ready-to-use electrodes, Physical Chemistry Chemical Physics, 23 (2021) 6725-6737.  https://doi.org/10.1039/D0CP06422J
  35. M. J. Herzog, N. Gauquelin, D. Esken, J. Verbeeck, J. Janek, Facile dry coating method of high-nickel cathode material by nanostructured fumed alumina (Al2O33) improving the performance of lithium-ion batteries, Energy Technology, 9 (2021) 2100028-2100042.  https://doi.org/10.1002/ente.202100028
  36. M.A.R. Khollari, M.K. Azar, M. Esmaeili, N. Malekpour, S.M. Hosseini Hosseinabad, R.S. Moakhar, A. Dolati, S. Ramakrishna, Electrochemical performance and elevated temperature properties of the TiO2 - coated Li[Ni0.8Co0.1Mn0.1]O2 cathode material for high-safety Li-ion batteries, ACS Applied Energy Materials, 4 (2021) 5304-5315.  https://doi.org/10.1021/acsaem.1c00827
  37. D. Olkhovskii, D. Ivanova, V. Chernyavsky, P. Vishniakov, D. Nazarov, I. Ezhov, L. Yafarova, S. Peng, M. Maximov, Atomic layer deposition titanium oxide coating for C-rate improvement of Li-ion cathodes, Journal of the Electrochemical Society, 171 (2024) 020508-020518. 
  38. Y. Li, X. Li, J. Hu, W. Liu, H. Maleki Kheimeh Sari, D. Li, Q. Sun, L. Kou, Z. Tian, L. Shao, C. Zhang, J. Zhang, X. Sun, ZnO interface modified LiNi0.6Co0.2Mn0.2O2 toward boosting lithium storage, Energy & Environmental Materials, 3 (2020) 522-528. https://doi.org/10.1002/eem2.12080
  39. J.Z. Kong, C. Ren, G.A. Tai, X. Zhang, F. Zhou, A.D. Li, D. Wu, H. Li, Ultrathin ZnO coating for improved electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material, Journal of Power Sources, 266 (2014) 433-439. https://doi.org/10.1016/j.jpowsour.2014.05.027
  40. V.C. Ho, H. An, M. Hong, S. Lee, J. Kim, M.B. Park, J. Mun, A low temperature self-assembled ZrO2 layer as a surface modification for high energy density Ni-rich cathode materials in a lithium-ion battery, Energy Technology, 9 (2021) 2000800. 
  41. L. Yao, F. Liang, J. Jin, B.V.R. Chowdari, J. Yang, Z. Wen, Improved electrochemical property of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode via in-situ ZrO2 coating for high energy density lithium ion batteries, Chemical Engineering Journal, 389 (2020) 124403. 
  42. D. Becker, M. Borner, R. Nolle, M. Diehl, S. Klein, U. Rodehorst, R. Schmuch, M. Winter, T. Placke, Surface modification of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material by tungsten oxide coating for improved electrochemical performance in lithium-ion batteries, ACS applied materials & interfaces, 11 (2019) 18404-18414.  https://doi.org/10.1021/acsami.9b02889
  43. Y. He, Y. Li, Y. Liu, N. Yao, J. Li, Y. Liu, Enhancement of the high-voltage electrochemical performance of an LiNi0.5Co0.2Mn0.3O2 cathode via WO3 coating, Applied Surface Science, 508 (2020) 145259.
  44. J. Liu, F. Li, L. Xi, Z. Sun, Y. Yang, J. Shen, S. Yao, J. Zhao, M. Zhu, J. Liu, Grafting a polymer coating layer onto Li1.2Ni0.13Co0.13Mn0.54O2 cathode by benzene diazonium salts to facilitate the cycling performance and high-voltage stability, Small, 20 (2024) 2305606.. 
  45. Z. Lin, C. Lin, F. Chen, R. Yu, Y. Xia, In situ construction of a polymer coating layer on the LiNi00.8Co0.1Mn0.1O2 cathode for high-performance lithium-ion batteries, ACS applied materials & interfaces, 16 (2024) 10692-10702.