DOI QR코드

DOI QR Code

Ginsenosides Decrease β-Amyloid Production via Potentiating Capacitative Calcium Entry

  • Yoon Young Cho (Department of Physiology, Sungkyunkwan University School of Medicine) ;
  • Jeong Hill Park (Research Institute of Pharmaceutical Sciences, Seoul National University, College of Pharmacy) ;
  • Jung Hee Lee (Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Sungkwon Chung (Department of Physiology, Sungkyunkwan University School of Medicine)
  • 투고 : 2023.09.26
  • 심사 : 2024.03.15
  • 발행 : 2024.05.01

초록

Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disorder characterized by extracellular amyloid plaques composed of amyloid β-peptide (Aβ). Studies have indicated that Ca2+ dysregulation is involved in AD pathology. It is reported that decreased capacitative Ca2+ entry (CCE), a refilling mechanism of intracellular Ca2+, resulting in increased Aβ production. In contrast, constitutive activation of CCE could decrease Aβ production. Panax ginseng Meyer is known to enhance memory and cognitive functions in healthy human subjects. We have previously reported that some ginsenosides decrease Aβ levels in cultured primary neurons and AD mouse model brains. However, mechanisms involved in the Aβ-lowering effect of ginsenosides remain unclear. In this study, we investigated the relationship between CCE and Aβ production by examining the effects of various ginsenosides on CCE levels. Aβ-lowering ginsenosides such as Rk1, Rg5, and Rg3 potentiated CCE. In contrast, ginsenosides without Aβ-lowering effects (Re and Rb2) failed to potentiate CCE. The potentiating effect of ginsenosides on CCE was inhibited by the presence of 2-aminoethoxydiphenyl borate (2APB), an inhibitor of CCE. 2APB alone increased Aβ42 production. Furthermore, the presence of 2APB prevented the effects of ginsenosides on Aβ42 production. Our results indicate that ginsenosides decrease Aβ production via potentiating CCE levels, confirming a close relationship between CCE levels and Aβ production. Since CCE levels are closely related to Aβ production, modulating CCE could be a novel target for AD therapeutics.

키워드

과제정보

This work was supported by grants to S.C. (2022R1A2C1007252) and (2021R1I1A1A01056365) to Y.Y.C. of the Basic Science Research Program through the National Research Foundation funded by the Ministry of Education, Science and Technology, Republic of Korea. It was also supported by a grant (2016R1A2A1A05004952) to J.H.L. of the National Research Foundation, Republic of Korea.

참고문헌

  1. Arispe, N., Rojas, E. and Pollard, H. B. (1993) Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum. Proc. Natl. Acad. Sci. U. S. A. 90, 567-571. https://doi.org/10.1073/pnas.90.2.567
  2. Baek, S. H., Bae, O. N. and Park, J. H. (2012) Recent methodology in ginseng analysis. J. Ginseng Res. 36, 119-134. https://doi.org/10.5142/jgr.2012.36.2.119
  3. Breijyeh, Z. and Karaman, R. (2020) Comprehensive review on Alzheimer's disease: causes and treatment. Molecules 25, 5789.
  4. Brini, M., Cali, T., Ottolini, D. and Carafoli, E. (2014) Neuronal calcium signaling: function and dysfunction. Cell. Mol. Life Sci. 71, 2787-2814. https://doi.org/10.1007/s00018-013-1550-7
  5. Calvo-Rodriguez, M., Kharitonova, E. K. and Bacskai, B. J. (2020) Therapeutic strategies to target calcium dysregulation in Alzheimer's disease. Cells 9, 2513.
  6. Cao, G., Su, P., Zhang, S., Guo, L., Zhang, H., Liang, Y., Qin, C. and Zhang, W. (2016) Ginsenoside Re reduces Aβ production by activating PPARγ to inhibit BACE1 in N2a/APP695 cells. Eur. J. Pharmacol. 793, 101-108. https://doi.org/10.1016/j.ejphar.2016.11.006
  7. Choi, K. T. (2008) Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol. Sin. 29, 1109-1118. https://doi.org/10.1111/j.1745-7254.2008.00869.x
  8. Choi, M. K. and Song, I. S. (2019) Interactions of ginseng with therapeutic drugs. Arch. Pharm. Res. 42, 862-878. https://doi.org/10.1007/s12272-019-01184-3
  9. Clapham, D. E. (2007) Calcium signaling. Cell 131, 1047-1058. https://doi.org/10.1016/j.cell.2007.11.028
  10. Colvin, R. A., Bennett, J. W. and Colvin, S. L. (1991) Na(+)-Ca2+ exchange activity is increased in Alzheimer's disease brain tissues. Ann. N. Y. Acad. Sci. 639, 325-327. https://doi.org/10.1111/j.1749-6632.1991.tb17320.x
  11. Coon, A. L., Wallace, D. R., Mactutus, C. F. and Booze, R. M. (1999) L-type calcium channels in the hippocampus and cerebellum of Alzheimer's disease brain tissue. Neurobiol. Aging 20, 597-603. https://doi.org/10.1016/S0197-4580(99)00068-8
  12. Etcheberrigaray, R., Hirashima, N., Nee, L., Prince, J., Govoni, S., Racchi, M., Tanzi, R. E. and Alkon, D. L. (1998) Calcium responses in fibroblasts from asymptomatic members of Alzheimer's disease families. Neurobiol. Dis. 5, 37-45. https://doi.org/10.1006/nbdi.1998.0176
  13. Frost, B., Jacks, R. L. and Diamond, M. I. (2009) Propagation of tau misfolding from the outside to the inside of a cell. J. Biol. Chem. 284, 12845-12852. https://doi.org/10.1074/jbc.M808759200
  14. Green, K. N., Demuro, A., Akbari, Y., Hitt, B. D., Smith, I. F., Parker, I. and LaFerla, F. M. (2008) SERCA pump activity is physiologically regulated by presenilin and regulates amyloid beta production. J. Gen. Physiol. 132, i1.
  15. Green, K. N. and LaFerla, F. M. (2008) Linking calcium to Abeta and Alzheimer's disease. Neuron 59, 190-194. https://doi.org/10.1016/j.neuron.2008.07.013
  16. Greotti, E., Capitanio, P., Wong, A., Pozzan, T., Pizzo, P. and Pendin, D. (2019) Familial Alzheimer's disease-linked presenilin mutants and intracellular Ca(2+) handling: a single-organelle, FRET-based analysis. Cell Calcium 79, 44-56. https://doi.org/10.1016/j.ceca.2019.02.005
  17. Gulisano, W., Maugeri, D., Baltrons, M. A., Fa, M., Amato, A., Palmeri, A., D'Adamio, L., Grassi, C., Devanand, D. P., Honig, L. S., Puzzo, D. and Arancio, O. (2018) Role of amyloid-β and tau proteins in Alzheimer's disease: confuting the amyloid cascade. J. Alzheimers Dis. 64, S611-S631. https://doi.org/10.3233/JAD-179935
  18. Heo, J. H., Lee, S. T., Oh, M. J., Park, H. J., Shim, J. Y., Chu, K. and Kim, M. (2011) Improvement of cognitive deficit in Alzheimer's disease patients by long term treatment with korean red ginseng. J. Ginseng Res. 35, 457-461. https://doi.org/10.5142/jgr.2011.35.4.457
  19. Iwasaki, H., Mori, Y., Hara, Y., Uchida, K., Zhou, H. and Mikoshiba, K. (2001) 2-Aminoethoxydiphenyl borate (2-APB) inhibits capacitative calcium entry independently of the function of inositol 1,4,5-trisphosphate receptors. Recept. Channels 7, 429-439.
  20. Kang, M. S., Baek, S. H., Chun, Y. S., Moore, A. Z., Landman, N., Berman, D., Yang, H. O., Morishima-Kawashima, M., Osawa, S., Funamoto, S., Ihara, Y., Di Paolo, G., Park, J. H., Chung, S. and Kim, T. W. (2013) Modulation of lipid kinase PI4KIIalpha activity and lipid raft association of presenilin 1 underlies gamma-secretase inhibition by ginsenoside (20S)-Rg3. J. Biol. Chem. 288, 20868-20882. https://doi.org/10.1074/jbc.M112.445734
  21. Kim, S. K. and Park, J. H. (2011) Trends in ginseng research in 2010. J. Ginseng Res. 35, 389-398. https://doi.org/10.5142/jgr.2011.35.4.389
  22. Kim, W. Y., Kim, J. M., Han, S. B., Lee, S. K., Kim, N. D., Park, M. K., Kim, C. K. and Park, J. H. (2000) Steaming of ginseng at high temperature enhances biological activity. J. Nat. Prod. 63, 1702-1704. https://doi.org/10.1021/np990152b
  23. Kuang, X. L., Liu, Y., Chang, Y., Zhou, J., Zhang, H., Li, Y., Qu, J. and Wu, S. (2016) Inhibition of store-operated calcium entry by sublethal levels of proteasome inhibition is associated with STIM1/STIM2 degradation. Cell Calcium 59, 172-180. https://doi.org/10.1016/j.ceca.2016.01.007
  24. Lee, C. H. and Kim, J. H. (2014) A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J. Ginseng Res. 38, 161-166. https://doi.org/10.1016/j.jgr.2014.03.001
  25. Lee, S. T., Chu, K., Sim, J. Y., Heo, J. H. and Kim, M. (2008) Panax ginseng enhances cognitive performance in Alzheimer disease. Alzheimer Dis. Assoc. Disord. 22, 222-226. https://doi.org/10.1097/WAD.0b013e31816c92e6
  26. Li, M., Liu, E., Zhou, Q., Li, S., Wang, X., Liu, Y., Wang, L., Sun, D., Ye, J., Gao, Y., Yang, X., Liu, J., Yang, Y. and Wang, J. Z. (2018) TRPC1 null exacerbates memory deficit and apoptosis induced by amyloid-β. J. Alzheimers Dis. 63, 761-772. https://doi.org/10.3233/JAD-180077
  27. Liang, H. Y., Zhang, P. P., Zhang, X. L., Zheng, Y. Y., Huang, Y. R., Zheng, G. Q. and Lin, Y. (2021) Preclinical systematic review of ginsenoside Rg1 for cognitive impairment in Alzheimer's disease. Aging (Albany N.Y.) 13, 7549-7569.
  28. Lin, H., Bhatia, R. and Lal, R. (2001) Amyloid beta protein forms ion channels: implications for Alzheimer's disease pathophysiology. FASEB J. 15, 2433-2444. https://doi.org/10.1096/fj.01-0377com
  29. Lu, J. M., Yao, Q. and Chen, C. (2009) Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr. Vasc. Pharmacol. 7, 293-302. https://doi.org/10.2174/157016109788340767
  30. Lu, R., Wang, J., Tao, R., Wang, J., Zhu, T., Guo, W., Sun, Y., Li, H., Gao, Y., Zhang, W., Fowler, C. J., Li, Q., Chen, S., Wu, Z., Masters, C. L., Zhong, C., Jing, N., Wang, Y. and Wang, Y. (2018) Reduced TRPC6 mRNA levels in the blood cells of patients with Alzheimer's disease and mild cognitive impairment. Mol. Psychiatry 23, 767-776. https://doi.org/10.1038/mp.2017.136
  31. Monteiro, A. R., Barbosa, D. J., Remiao, F. and Silva, R. (2023) Alzheimer's disease: insights and new prospects in disease pathophysiology, biomarkers and disease-modifying drugs. Biochem. Pharmacol. 211, 115522.
  32. Ong, H. L., de Souza, L. B. and Ambudkar, I. S. (2016) Role of TRPC channels in store-operated calcium entry. Adv. Exp. Med. Biol. 898, 87-109. https://doi.org/10.1007/978-3-319-26974-0_5
  33. Park, I. H., Kim, N. Y., Han, S. B., Kim, J. M., Kwon, S. W., Kim, H. J., Park, M. K. and Park, J. H. (2002) Three new dammarane glycosides from heat processed ginseng. Arch. Pharm. Res. 25, 428-432. https://doi.org/10.1007/BF02976595
  34. Popugaeva, E., Chernyuk, D. and Bezprozvanny, I. (2020) Reversal of calcium dysregulation as potential approach for treating Alzheimer's disease. Curr. Alzheimer Res. 17, 344-354. https://doi.org/10.2174/1567205017666200528162046
  35. Razgonova, M. P., Veselov, V. V., Zakharenko, A. M., Golokhvast, K. S., Nosyrev, A. E., Cravotto, G., Tsatsakis, A. and Spandidos, D. A. (2019) Panax ginseng components and the pathogenesis of Alzheimer's disease (review). Mol. Med. Rep. 19, 2975-2998.
  36. Reay, J. L., Kennedy, D. O. and Scholey, A. B. (2005) Single doses of Panax ginseng (G115) reduce blood glucose levels and improve cognitive performance during sustained mental activity. J. Psychopharmacol. 19, 357-365. https://doi.org/10.1177/0269881105053286
  37. Renner, M., Lacor, P. N., Velasco, P. T., Xu, J., Contractor, A., Klein, W. L. and Triller, A. (2010) Deleterious effects of amyloid beta oligomers acting as an extracellular scaffold for mGluR5. Neuron 66, 739-754. https://doi.org/10.1016/j.neuron.2010.04.029
  38. Selkoe, D. J. and Hardy, J. (2016) The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol. Med. 8, 595-608. https://doi.org/10.15252/emmm.201606210
  39. Sevigny, J., Chiao, P., Bussiere, T., Weinreb, P. H., Williams, L., Maier, M., Dunstan, R., Salloway, S., Chen, T., Ling, Y., O'Gorman, J., Qian, F., Arastu, M., Li, M., Chollate, S., Brennan, M. S., QuinteroMonzon, O., Scannevin, R. H., Arnold, H. M., Engber, T., Rhodes, K., Ferrero, J., Hang, Y., Mikulskis, A., Grimm, J., Hock, C., Nitsch, R. M. and Sandrock, A. (2016) The antibody aducanumab reduces Aβ plaques in Alzheimer's disease. Nature 537, 50-56. https://doi.org/10.1038/nature19323
  40. Tong, B. C., Lee, C. S., Cheng, W. H., Lai, K. O., Foskett, J. K. and Cheung, K. H. (2016) Familial Alzheimer's disease-associated presenilin 1 mutants promote γ-secretase cleavage of STIM1 to impair store-operated Ca2+ entry. Sci. Signal. 9, ra89.
  41. Tu, H., Nelson, O., Bezprozvanny, A., Wang, Z., Lee, S. F., Hao, Y. H., Serneels, L., De Strooper, B., Yu, G. and Bezprozvanny, I. (2006) Presenilins form ER Ca2+ leak channels, a function disrupted by familial Alzheimer's disease-linked mutations. Cell 126, 981-993. https://doi.org/10.1016/j.cell.2006.06.059
  42. Ureshino, R. P., Erustes, A. G., Bassani, T. B., Wachilewski, P., Guarache, G. C., Nascimento, A. C., Costa, A. J., Smaili, S. S. and Pereira, G. (2019) The interplay between Ca(2+) signaling pathways and neurodegeneration. Int. J. Mol. Sci. 20, 6004.
  43. van Dyck, C. H. (2018) Anti-amyloid-β monoclonal antibodies for Alzheimer's disease: pitfalls and promise. Biol. Psychiatry 83, 311-319. https://doi.org/10.1016/j.biopsych.2017.08.010
  44. Wesnes, K. A., Ward, T., McGinty, A. and Petrini, O. (2000) The memory enhancing effects of a Ginkgo biloba/Panax ginseng combination in healthy middle-aged volunteers. Psychopharmacology (Berl.) 152, 353-361. https://doi.org/10.1007/s002130000533
  45. Wu, J. J., Yang, Y., Wan, Y., Xia, J., Xu, J. F., Zhang, L., Liu, D., Chen, L., Tang, F., Ao, H. and Peng, C. (2022) New insights into the role and mechanisms of ginsenoside Rg1 in the management of Alzheimer's disease. Biomed. Pharmacother. 152, 113207.
  46. Yoo, A. S., Cheng, I., Chung, S., Grenfell, T. Z., Lee, H., Pack-Chung, E., Handler, M., Shen, J., Xia, W., Tesco, G., Saunders, A. J., Ding, K., Frosch, M. P., Tanzi, R. E. and Kim, T. W. (2000) Presenilinmediated modulation of capacitative calcium entry. Neuron 27, 561-572. https://doi.org/10.1016/S0896-6273(00)00066-0
  47. Zeiger, W., Vetrivel, K. S., Buggia-Prevot, V., Nguyen, P. D., Wagner, S. L., Villereal, M. L. and Thinakaran, G. (2013) Ca2+ influx through store-operated Ca2+ channels reduces Alzheimer disease β-amyloid peptide secretion. J. Biol. Chem. 288, 26955-26966. https://doi.org/10.1074/jbc.M113.473355
  48. Zhou, H., Iwasaki, H., Nakamura, T., Nakamura, K., Maruyama, T., Hamano, S., Ozaki, S., Mizutani, A. and Mikoshiba, K. (2007) 2-Aminoethyl diphenylborinate analogues: selective inhibition for store-operated Ca2+ entry. Biochem. Biophys. Res. Commun. 352, 277-282. https://doi.org/10.1016/j.bbrc.2006.10.174
  49. Zhou, J., Song, J. and Wu, S. (2019) Autophagic degradation of stromal interaction molecule 2 mediates disruption of neuronal dendrites by endoplasmic reticulum stress. J. Neurochem. 151, 351-369. https://doi.org/10.1111/jnc.14712
  50. Zhou, J. and Wu, S. (2020) Impairment of store-operated calcium entry: implications in Alzheimer's neurodegeneration. Curr. Alzheimer Res. 17, 1088-1094. https://doi.org/10.2174/1567205018666210119144241