Acknowledgement
This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C1003776, 2021R1I1A1A01054901).
References
- Andreassen, E., Clausen, A., Schevenels, M., Lazarov, B.S. and Sigmund, O. (2011), "Efficient topology optimization in MATLAB using 88 lines of code", Struct. Multidiscipl. Optimiz., 43, 1-16. https://doi.org/10.1007/s00158-010-0594-7.
- Bandyopadhyay, A. and Bryan, H. (2018), "Additive manufacturing of multi-material structures", Mater. Sci. Eng.: R: Reports, 129, 1-16. https://doi.org/10.1016/j.mser.2018.04.001.
- Banh, T. and Dongkyu, L. (2018), "Multi-material topology optimization design for continuum structures with crack patterns", Compos. Struct., 186. https://doi.org/10.1016/j.compstruct.2017.11.088.
- Banh, T.T. (2018), "Multi-material topology optimization of Reissner-Mindlin plates using MITC4", Steel Compos. Struct., 27(1), 27-33. https://doi.org/10.12989/SCS.2018.27.1.027.
- Banh, T.T., Luu, N.G. and Lee, D. (2021), "A non-homogeneous multi-material topology optimization approach for functionally graded structures with cracks", Compos. Struct., 273, 114230.
- Bendsoe, M.P. and Sigmund, O. (2013), Topology Optimization: Theory, Methods, and Applications, Springer Science & Business Media.
- Blasques, J.P. (2014), "Multi-material topology optimization of laminated composite beams with eigenfrequency constraints", Compos. Struct., 111, 45-55. https://doi.org/10.1016/j.compstruct.2013.12.021.
- Blasques, J.P. and Mathias, S. (2012), "Multi-material topology optimization of laminated composite beam cross sections", Compos. Struct., 94, 3278-89. https://doi.org/10.1016/j.compstruct.2012.05.002.
- De Borst, R., Crisfield, M.A., Remmers, J.J. and Verhoosel, C.V. (2012), Nonlinear Finite Element Analysis of Solids and Structures. John Wiley & Sons.
- Doan, Q.H. and Dongkyu, L. (2016), "Multi- Material structural topology optimization method with elastic buckling constraints", Master Thesis, Sejong University, Seoul, Korea.
- Doan, Quoc Hoan, Dongkyu Lee, Jaehong Lee, and Joowon Kang (2019), "Design of buckling constrained multiphase material structures using continuum topology optimization", Meccanica, 54, 1179-201.10.1007/s11012-019-01009-z
- Dunning, P.D., Ovtchinnikov, E., Scott, J. and Kim, H.A. (2016), "Level-set topology optimization with many linear buckling constraints using an efficient and robust eigensolver", Int. J. Numer. Meth. Eng., 107(12), 1029-1053. https://doi.org/10.1002/nme.5203
- Frazier, W.E. (2014), "Metal additive manufacturing: A review", J. Mater. Eng. Perform., 23, 1917-1928. https://doi.org/10.1007/s11665-014-0958-z
- Gao, X. and Haitao, M. (2015), "Topology optimization of continuum structures under buckling constraints", Comput. Struct., 157, 142-152. https://doi.org/10.1016/j.compstruc.2015.05.020.
- Gouker, R.M., Gupta, S.K., Bruck, H.A. and Holzschuh, T. (2006), "Manufacturing of multi-material compliant mechanisms using multi-material molding", Int. J. Adv. Manufact. Technol., 30, 1049-1075. https://doi.org/10.1007/s00170-005-0152-4.
- Huang, S.H., Liu, P., Mokasdar, A. and Hou, L. (2013), "Additive manufacturing and its societal impact: a literature review", Int. J. Adv. Manufact. Technol., 67, 1191-1203. https://doi.org/10.1007/s00170-012-4558-5.
- Kim, J.H. and Paulino, G.H. (2002), "Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials", J. Appl. Mech., 69(4), 502-514. https://doi.org/10.1115/1.1467094.
- Konda, N. and Erdogan, F. (1994), "The mixed mode crack problem in a nonhomogeneous elastic medium", Eng. Fract. Mech., 47(4), 533-545. https://doi.org/10.1016/0013-7944(94)90253-4.
- Lieu, X.Q. and Lee, J. (2017), "Multiresolution topology optimization using isogeometric analysis", Int. J. Numer. Meth. Eng., 112, 2025-2047. https://doi.org/10.1002/nme.5593.
- Lieu, X.Q., Lee, J. (2019), "An isogeometric multimesh design approach for size and shape optimization of multidirectional functionally graded plates", Comput. Meth. Appl. Mech. Eng., 343, 407-437. https://doi.org/10.1016/j.cma.2018.08.017.
- Lieu, X.Q., Lee, J.H. (2017), "A multi-resolution approach for multi-material topology optimization based on isogeometric analysis", Comput. Meth. Appl. Mech. Eng., 323, 272-302. https://doi.org/10.1016/j.cma.2017.05.009.
- Lindgaard, E. and Dahl, J. (2013), "On compliance and buckling objective functions in topology optimization of snap-through problems", Struct. Multidiscipl. Optimiz., 47, 409-421. https://doi.org/10.1007/s00158-012-0832-2.
- Luong-Van, H., Nguyen-Thoi, T., Liu, G.R. and Phung-Van, P. (2014), "A cell-based smoothed finite element method using three-node shear-locking free Mindlin plate element (CS-FEM-MIN3) for dynamic response of laminated composite plates on viscoelastic foundation", Eng. Anal. Bound. Elements, 42, 8-19. https://doi.org/10.1016/j.enganabound.2013.11.008.
- Manickarajah, D. (1998), "Optimum design of structures with stability constraints using the evolutionary optimisation method", Victoria University of Technology.
- Neves, M.M., Sigmund, O. and Bendsoe, M.P. (2002), "Topology optimization of periodic microstructures with a penalization of highly localized buckling modes", Int. J. Numer. Meth. Eng., 54(6), 809-834. https://doi.org/10.1002/nme.449.
- Nguyen-Thoi, T., Luong-Van, H., Phung-Van, P., Rabczuk, T. and Tran-Trung, D. (2013), "Dynamic responses of composite plates on the Pasternak foundation subjected to a moving mass by a cell-based smoothed discrete shear gap (CS-FEM-DSG3) method", Int. J. Compos. Mater., 3(6), 19-27. https://doi.org/10.5923/s.cmaterials.201309.03.
- Nguyen-Thoi, T., Phung-Van, P., Luong-Van, H., Nguyen-Van, H. and Nguyen-Xuan, H. (2013), "A cell-based smoothed three-node Mindlin plate element (CS-MIN3) for static and free vibration analyses of plates", Comput. Mech., 51, 65-81. https://doi.org/10.1016/j.commatsci.2014.04.043.
- Nguyen-Xuan, H. (2017), "A polytree-based adaptive polygonal finite element method for topology optimization", Int. J. Numer. Meth. Eng., 110, 972-1000. https://doi.org/10.1002/nme.5448.
- Nguyen-Xuan, H., Liu, G.R., Bordas, S., Natarajan, S. and Rabczuk, T. (2013), "An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order", Comput. Meth. Appl. Mech. Eng., 253, 252-273. https://doi.org/10.1016/j.cma.2012.07.017.
- Nguyen-Xuan, H., Nguyen-Hoang, S., Rabczuk, T. and Hackl, K. (2017), "A polytree-based adaptive approach to limit analysis of cracked structures", Comput. Meth. Appl. Mech. Eng., 313, 1006-1039. https://doi.org/10.1016/j.cma.2016.09.016.
- Obielodan, J.O., Ceylan, A., Murr, L.E. and Stucker, B.E. (2010), "Multi-material bonding in ultrasonic consolidation", Rapid Prototyping J., 16(3), 180-188. https://doi.org/10.1108/13552541011034843.
- Olhoff, N. and Rasmussen, S.H. (1977), "On single and bimodal optimum buckling loads of clamped columns", Int. J. Solids Struct., 13(7), 605-614. https://doi.org/10.1016/0020-7683(77)90043-9.
- Paulino, G.H. and Silva, E.C.N. (2005), "Design of functionally graded structures using topology optimization", Mater. Sci. Forum, 492, 435-440. www.scientific.net/MSF.492-493.435. https://doi.org/10.4028/www.scientific.net/MSF.492-493.435
- Paulino, G.H., Sutradhar, A. and Gruy, L.J. (2003), "Boundary element methods for functionally graded materials", WIT Transactions Modelling and Simulation, 34.
- Phung-Van, P., Abdel-Wahab, M., Liew, K.M., Bordas, S.P.A. and Nguyen-Xuan, H. (2015), "Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory", Compos. Struct., 123, 137-149. https://doi.org/10.1016/j.compstruct.2014.12.021.
- Phung-Van, P., De Lorenzis, L., Thai, C.H., Abdel-Wahab, M. and Nguyen-Xuan, H. (2015), "Analysis of laminated composite plates integrated with piezoelectric sensors and actuators using higher-order shear deformation theory and isogeometric finite elements", Comput. Mater. Sci., 96, 495-505. https://doi.org/10.1016/j.commatsci.2014.04.068.
- Phung-Van, P., Ferreira, A.J.M., Nguyen-Xuan, H. and Wahab, M.A. (2017), "An isogeometric approach for size-dependent geometrically nonlinear transient analysis of functionally graded nanoplates", Compos. Part B: Eng., 118, 125-134. https://doi.org/10.1016/j.compositesb.2017.03.012.
- Phung-Van, P., Lieu, Q.X., Nguyen-Xuan, H. and Wahab, M.A. (2017), "Size-dependent isogeometric analysis of functionally graded carbon nanotube-reinforced composite nanoplates", Compos. Struct., 166, 120-135. https://doi.org/10.1016/j.compstruct.2017.01.049.
- Phung-Van, P., Nguyen, L.B., Tran, L.V., Dinh, T.D., Thai, C.H., Bordas, S.P.A. and Nguyen-Xuan, H. (2015), "An efficient computational approach for control of nonlinear transient responses of smart piezoelectric composite plates", Int. J. Non-Linear Mech., 76, 190-202. https://doi.org/10.1016/j.ijnonlinmec.2015.06.003.
- Phung-Van, P., Tran, L.V., Ferreira, A.J.M., Nguyen-Xuan, H. and Abdel-Wahab, M.J.N.D. (2017), "Nonlinear transient isogeometric analysis of smart piezoelectric functionally graded material plates based on generalized shear deformation theory under thermo-electro-mechanical loads", Nonlinear Dyn., 87, 879-894. https://doi.org/10.1007/s11071-016-3085-6.
- Phung-Van, P., Luong-Van, H., Nguyen-Thoi, T. and Nguyen-Xuan, H. (2014), "A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) based on the C0-type higher-order shear deformation theory for dynamic responses of Mindlin plates on viscoelastic foundations subjected to a moving sprung vehicle", Int. J. Numer. Meth. Eng., 98(13), 988-1014. https://doi.org/10.1002/nme.4662.
- Rahmatalla, S. and Swan, C.C. (2003), "Continuum topology optimization of buckling-sensitive structures", AIAA J., 41(6), 1180-1189. https://doi.org/10.2514/2.2062.
- Sigmund, O. and Torquato, S. (1997), "Design of materials with extreme thermal expansion using a three-phase topology optimization method", J. Mech. Phys. Solids, 45, 1037-1067. https://doi.org/10.1016/S0022-5096(96)00114-7.
- Svanberg, K. (1987), "The method of moving asymptotes-a new method for structural optimization", Int. J. Numer. Meth. Eng., 24, 359-373. https://doi.org/10.1002/nme.1620240207.
- Vaezi, M., Chianrabutra, S., Mellor, B. and Yang, S. (2013), "Multiple material additive manufacturing-Part 1: a review: this review paper covers a decade of research on multiple material additive manufacturing technologies which can produce complex geometry parts with different materials", Virtual Phys. Prototyping, 8(1), 19-50. https://doi.org/10.1080/17452759.2013.778175.
- Van den Boom, S.J. (2014), "Topology optimisation including buckling analysis", MS Dissertation, Delft University of Technology.
- Xingjun, G. and Haitao, M. (2014), "A new method for dealing with pseudo modes in topology optimization of continua for free vibration", Chinese J. Theoretic. Appl. Mech., 46(5), 739-746.
- Yang, Q., Zhang, P., Cheng, L., Min, Z., Chyu, M. and To, A.C. (2016), "Finite element modeling and validation of thermomechanical behavior of Ti-6Al-4V in directed energy deposition additive manufacturing", Additive Manufact., 12, 169-177. https://doi.org/10.1016/j.addma.2016.06.012.
- Yi, B., Zhou, Y., Yoon, G.H. and Saitou, K. (2019), "Topology optimization of functionally-graded lattice structures with buckling constraints", Comput. Meth. Appl. Mech. Eng., 354, 593-619. https://doi.org/10.1016/j.cma.2019.05.055.
- Zhou, M. (2004), "Topology optimization for shell structures with linear buckling responses", In WCCM VI. Beijing, China.