DOI QR코드

DOI QR Code

Shear strengthening of seawater sea-sand concrete beams containing no shear reinforcement using NSM aluminum alloy bars

  • Yasin Onuralp Ozkilic (Department of civil engineering, Necmettin Erbakan University) ;
  • Emrah Madenci (Department of civil engineering, Necmettin Erbakan University) ;
  • Ahmed Badr (Department of Civil Engineering, Faculty of Engineering, Damanhur University) ;
  • Walid Mansour (Department of Civil Engineering, Faculty of Engineering) ;
  • Sabry Fayed (Department of Civil Engineering, Faculty of Engineering)
  • 투고 : 2023.04.03
  • 심사 : 2024.03.27
  • 발행 : 2024.04.25

초록

Due to the fast development of constructions in recent years, there has been a rapid consumption of fresh water and river sand. In the production of concrete, alternatives such as sea water and sea sand are available. The near surface mounted (NSM) technique is one of the most important methods of strengthening. Aluminum alloy (AA) bars are non-rusting and suitable for usage with sea water and sand concrete (SSC). The goal of this study was to enhance the shear behaviour of SSC-beams strengthened with NSM AA bars. Twenty-four RC beams were cast from fresh water river sand concrete (FRC) and SSC before being tested in four-point flexure. All beams are the same size and have the same internal reinforcement. The major factors are the concrete type (FRC or SSC), the concrete degree (C25 or C50 with compressive strength = 25 and 50 MPa, respectively), the presence of AA bars for strengthening, the direction of AA bar reinforcement (vertical or diagonal), and the AA bar ratio (0, 0.5, 1, 1.25 and 2 %). The beams' failure mechanism, load-displacement response, ultimate capacity, and ductility were investigated. Maximum load and ductility of C25-FRC-specimens with vertical and diagonal AA bar ratios (1%) were 100,174 % and 140, 205.5 % greater, respectively, than a matching control specimen. The ultimate load and ductility of all SSC-beams were 16-28 % and 11.3-87 % greater, respectively, for different AA bar methods than that of FRC-beams. The ultimate load and ductility of C25-SSC-beams vertically strengthened with AA bar ratios were 66.7-172.7 % and 89.6-267.9 % higher than the unstrengthened beam, respectively. When compared to unstrengthened beams, the ultimate load and ductility of C50-SSC-beams vertically reinforced with AA bar ratios rose by 50-120 % and 45.4-336.1 %, respectively. National code proposed formulae were utilized to determine the theoretical load of tested beams and compared to matching experimental results. The predicted theoretical loads were found to be close to the experimental values.

키워드

과제정보

All authors are grateful to the department of civil engineering, Faculty of Engineering, Kafrelsheikh University, Egypt for providing financial assistance for the experimental work.

참고문헌

  1. Abdalla, J.A., Abu-Obeidah, A.S., Hawileh, R.A. and Rasheed, H.A. (2016), "Shear strengthening of reinforced concrete beams using externally-bonded aluminum alloy plates: An experimental study", Construct. Build. Mater., 128, 24-37. https://doi.org/10.1016/j.conbuildmat.2016.10.071.
  2. Abdalla, J.A., Abu-Obeidah, A.S., Hawileh, R.A. and Rasheed, H.A. (2016), "Shear strengthening of reinforced concrete beams using externally-bonded aluminum alloy plates: An experimental study", Construct. Build. Mater., 128, 24-37. https://doi.org/10.1016/j.conbuildmat.2016.10.071.
  3. Abu-Obeidah, A., Hawileh, R.A. and Abdalla, J.A. (2015), "Finite element analysis of strengthened RC beams in shear with aluminum plates", Comput. Struct., 147, 36-46. https://doi.org/10.1016/j.compstruc.2014.10.009.
  4. Adam, M.A., Said, M., Mahmoud, A.A. and Shanour, A.S. (2015), "Analytical and experimental flexural behavior of concrete beams reinforced with glass fiber reinforced polymers bars", Construct. Build. Mater., 84, 354-366. https://doi.org/10.1016/j.conbuildmat.2015.03.057.
  5. Aksoylu, C. (2022), "Shear strengthening of reinforced concrete beams with minimum CFRP and GFRP strips using different wrapping technics without anchoring application", Steel Compos. Struct., 44(6), 845-865.
  6. Aksoylu, C., Ozkilic, Y.O., Madenci, E. and Safonov, A. (2022), "Compressive behavior of pultruded GFRP boxes with concentric openings strengthened by different composite wrappings", Polymers, 14(19), 4095. https://doi.org/10.3390/polym14194095.
  7. Aksoylu, C., Ozkilic, Y.O., Yazman, S., Gemi, L. and Arslan, M.H. (2021), "Experimental and numerical investigation of load bearing capacity of thinned end precast purlin beams and solution proposals", Teknik Dergi.
  8. Al-Mahmoud, F., Castel, A., Francois, R. and Tourneur, C. (2009), "Strengthening of RC members with near-surface mounted CFRP rods", Compos. Struct., 91(2), 138-147. https://doi.org/10.1016/j.compstruct.2009.04.040.
  9. Al-Rousan, R.Z. (2018), "Behavior of macro synthetic fiber concrete beams strengthened with different CFRP composite configurations", J. Build. Eng., 20, 595-608. https://doi.org/10.1016/j.jobe.2018.09.009.
  10. Bilotta, A., Ceroni, F., Nigro, E. and Pecce, M. (2015), "Efficiency of CFRP NSM strips and EBR plates for flexural strengthening of RC beams and loading pattern influence", Compos. Struct., 124, 163-175. https://doi.org/10.1016/j.compstruct.2014.12.046.
  11. Cam, G. and Ipekoglu, G. (2017), "Recent developments in joining of aluminum alloys", Int. J. Adv. Manufact. Technol., 91, 1851-1866. https://doi.org/10.1007/s00170-016-9861-0
  12. Capozucca, R. (2014), "On the strengthening of RC beams with near surface mounted GFRP rods", Compos. Struct., 117, 143-155. https://doi.org/10.1016/j.compstruct.2014.06.030.
  13. Ceroni, F., Cosenza, E., Gaetano, M. and Pecce, M. (2006), "Durability issues of FRP rebars in reinforced concrete members", Cement Concrete Compos., 28(10), 857-868. https://doi.org/10.1016/j.cemconcomp.2006.07.004.
  14. Chen, G.M., He, Z.B., Jiang, T., Chen, J.F. and Teng, J.G. (2017), "Axial compression tests on FRP-confined seawater/sea-sand concrete", In Proceedings of 6th Asia-Pacific Conference on FRP in Structures. Conference, Conference.
  15. Dixit, M., Mishra, R.S. and Sankaran, K.K. (2008), "Structure-property correlations in Al 7050 and Al 7055 high-strength aluminum alloys", Mater. Sci. Eng.: A, 478(1-2), 163-172. https://doi.org/10.1016/j.msea.2007.05.116
  16. Dong, Z., Wu, G. and Xu, Y. (2016), "Experimental study on the bond durability between steel-FRP composite bars (SFCBs) and sea sand concrete in ocean environment", Construct. Build. Mater., 115, 277-284. https://doi.org/10.1016/j.conbuildmat.2016.04.052.
  17. Dong, Z., Wu, G., Zhao, X.L., Zhu, H. and Lian, J.L. (2018), "Durability test on the flexural performance of seawater sea-sand concrete beams completely reinforced with FRP bars", Construct. Build. Mater., 192, 671-682. https://doi.org/10.1016/j.conbuildmat.2018.10.166.
  18. Egyptian Code Committee (2018), "Egyptian Code for the Design and Construction of concrete Structures", ECP-203, Cairo: Housing and Building Research Centre.
  19. El-Nemr, A., Ahmed, E.A., El-Safty, A. and Benmokrane, B. (2018), "Evaluation of the flexural strength and serviceability of concrete beams reinforced with different types of GFRP bars", Eng. Struct., 173, 606-619. https://doi.org/10.1016/j.engstruct.2018.06.089.
  20. Elsamak, G. and Fayed, S. (2021), "Flexural strengthening of RC beams using externally bonded aluminum plates: An experimental and numerical study", Adv. Concrete Construct., 11(6), 481-492. https://doi.org/10.12989/acc.2021.11.6.481.
  21. Escorcio, P. and Franca, P.M. (2016), "Experimental study of a rehabilitation solution that uses GFRP bars to replace the steel bars of reinforced concrete beams", Eng. Struct., 128, 166-183. https://doi.org/10.1016/j.engstruct.2016.09.013.
  22. Fayed, S., Basha, A. and Hamoda, A. (2019), "Shear strengthening of RC beams using aluminum plates: An experimental work", Construct. Build. Mater., 221, 122-138. https://doi.org/10.1016/j.conbuildmat.2019.06.068.
  23. Feng, P., Wang, J., Wang, Y., Loughery, D. and Niu, D. (2014), "Effects of corrosive environments on properties of pultruded GFRP plates", Compos. Part B: Eng., 67, 427-433. https://doi.org/10.1016/j.compositesb.2014.08.021.
  24. Fu, B. (2016), "Debonding Failure in FRP - Strengthened RC Beams: Prediction and Suppression", Dissertation, The Hong Kong Polytechnic University
  25. Fayed, S., Badr el-din, A., Basha, A. and Mansour, W. (2022), "Shear behavior of RC pile cap beams strengthened using ultrahigh performance concrete reinforced with steel mesh fabric", Case Studies Construct. Mater., 17, e01532. https://www.sciencedirect.com/science/article/pii/S2214509522006647.
  26. Gao, D. and Zhang, C. (2020), "Shear strength calculating model of FRP bar reinforced concrete beams without stirrups", Eng. Struct., 221, 111025. https://doi.org/10.1016/j.engstruct.2020.111025.
  27. Gemi, L., Alsdudi, M., Aksoylu, C., Yazman, S., Ozkilic, Y.O. and Arslan, M.H. (2022), "Optimum amount of CFRP for strengthening shear deficient reinforced concrete beams", Steel Compos. Struct., 43(6), 735-757.
  28. Gemi, L., Madenci, E., Ozkilic, Y.O., Yazman, S. and Safonov, A. (2022), "Effect of fiber wrapping on bending behavior of reinforced concrete filled pultruded GFRP composite hybrid beams", Polymers, 14(18), 3740. https://doi.org/10.3390/polym14183740.
  29. He, H., Qiao, H., Sun, T., Yang, H. and He, C. (2024), "Research progress in mechanisms, influence factors and improvement routes of chloride binding for cement composites", J. Build. Eng., 86, 108978. https://doi.org/10.1016/j.jobe.2024.108978.
  30. Hu, X., Xiao, J., Zhang, K. and Zhang, Q. (2022), "The state-of-the-art study on durability of FRP reinforced concrete with seawater and sea sand", J. Build. Eng., 51, 104294. https://doi.org/10.1016/j.jobe.2022.104294.
  31. Hua, Y., Yin, S. and Peng, Z. (2020), "Crack development and calculation method for the flexural cracks in BFRP reinforced seawater sea-sand concrete (SWSSC) beams", Construct. Build. Mater., 255, 119328. https://doi.org/10.1016/j.conbuildmat.2020.119328.
  32. Huang, H., Huang, M., Zhang, W., Pospisil, S. and Wu, T. (2020), "Experimental investigation on rehabilitation of corroded RC columns with BSP and HPFL under combined loadings", J. Struct. Eng., 146(8). https://doi.org/10.1061/(ASCE)ST.1943-541X.0002725.
  33. Huang, H., Guo, M., Zhang, W., Zeng, J., Yang, K. and Bai, H. (2021a), "Numerical investigation on the bearing capacity of RC columns strengthened by HPFL-BSP under combined loadings", J. Build. Eng., 39, 102266. https://doi.org/10.1016/j.jobe.2021.102266.
  34. Huang, H., Yuan, Y., Zhang, W. and Zhu, L. (2021b), "Property assessment of high-performance concrete containing three types of fibers", Int. J. Concrete Struct. Mater., 15(1), 39. https://doi.org/10.1186/s40069-021-00476-7.
  35. Huang, H., Huang, M., Zhang, W. and Yang, S. (2021c), "Experimental study of predamaged columns strengthened by HPFL and BSP under combined load cases", Struct. Infrastruct. Eng., 17(9), 1210-1227. https://doi.org/10.1080/15732479.2020.1801768.
  36. Jawdhari, A., Peiris, A. and Harik, I. (2018), "Experimental study on RC beams strengthened with CFRP rod panels", Eng. Struct., 173, 693-705. https://doi.org/10.1016/j.engstruct.2018.06.105.
  37. Kar, S. and Biswal, K.C. (2020), "Shear strengthening of RC beams with basalt fiber reinforced polymer (BFRP) composites", Adv. Concrete Construct., 10(2), 93-104. https://doi.org/10.12989/acc.2020.10.2.093.
  38. Lattif, Y. and Hamdy, O. (2022), "An experimental investigation of the flexural strengthening of preloaded self-compacted RC beams using CFRP sheets and laminates composites", Adv. Concrete Construct., 13(4), 307-313. https://doi.org/10.12989/acc.2022.13.4.307.
  39. Li, L., Hou, B., Lu, Z. and Liu, F. (2018), "Fatigue behaviour of sea sand concrete beams reinforced with basalt fibre-reinforced polymer bars", Construct. Build. Mater., 179, 160-171. https://doi.org/10.1016/j.conbuildmat.2018.05.218.
  40. Li, Y.L., Teng, J.G., Zhao, X.L. and Raman, R.S. (2018), "Theoretical model for seawater and sea sand concrete-filled circular FRP tubular stub columns under axial compression", Eng. Struct., 160, 71-84. https://doi.org/10.1016/j.engstruct.2018.01.017.
  41. Li, Y.L., Zhao, X.L., Singh, R.R. and Al-Saadi, S. (2016a), "Experimental study on seawater and sea sand concrete filled GFRP and stainless steel tubular stub columns", Thin-Wall. Struct., 106, 390-406. https://doi.org/10.1016/j.tws.2016.05.014.
  42. Li, Y.L., Zhao, X.L., Singh, R.R. and Al-Saadi, S. (2016b), "Tests on seawater and sea sand concrete-filled CFRP, BFRP and stainless steel tubular stub columns", Thin-Wall. Struct., 108, 163-184. https://doi.org/10.1016/j.tws.2016.08.016.
  43. Li, Z., Yang, H., Hu, X., Wei, J. and Han, Z. (2018), "Experimental study on the crush behavior and energy-absorption ability of circular magnesium thin-walled tubes and the comparison with aluminum tubes", Eng. Struct., 164, 1-13. https://doi.org/10.1016/j.engstruct.2018.02.083.
  44. Liu, M., Zhang, L., Wang, P. and Chang, Y. (2015), "Buckling behaviors of section aluminum alloy columns under axial compression", Eng. Struct., 95, 127-137. https://doi.org/10.1016/j.engstruct.2015.03.064.
  45. Lu, Z., Li, W., Zeng, X. and Pan, Y. (2023), "Durability of BFRP bars and BFRP reinforced seawater sea-sand concrete beams immersed in water and simulated seawater", Construct. Build. Mater., 363, 129845. https://www.sciencedirect.com/science/article/abs/pii/S0950061822035012
  46. Lu, X.Z., Teng, J.G., Ye, L.P. and Jiang, J.J. (2007), "Intermediate crack debonding in FRP-strengthened RC beams: FE analysis and strength model", J. Compos. Construct., 11(2), 161-174. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:2(161)
  47. Madenci, E., Ozkilic, Y. O., Aksoylu, C., & Safonov, A. (2022). The effects of eccentric web openings on the compressive performance of pultruded GFRP boxes wrapped with GFRP and CFRP sheets. Polymers, 14(21), 4567. https://doi.org/10.3390/polym14214567.
  48. Madenci, E., Ozkilic, Y. O., Aksoylu, C., Asyraf, M.R.M., Syamsir, A., Supian, A.B.M. and Mamaev, N. (2023), "Buckling analysis of CNT-reinforced polymer composite beam using experimental and analytical methods", Materials, 16(2), 614. https://doi.org/10.3390/ma16020614.
  49. Mahmoud, K., Anand, P. and El-Salakawy, E. (2018), "3-D finite element modelling of prestressed hollow-core slabs strengthened with near surface mounted CFRP strips", Comput. Concrete, 21(6), 607-622.
  50. Maranan, G.B., Manalo, A.C., Benmokrane, B., Karunasena, W. and Mendis, P. (2015), "Evaluation of the flexural strength and serviceability of geopolymer concrete beams reinforced with glass-fibre-reinforced polymer (GFRP) bars", Eng. Struct., 101, 529-541. https://doi.org/10.1016/j.engstruct.2015.08.003.
  51. Ozkilic, Y.O., Aksoylu, C., Gemi, L. and Arslan, M.H. (2022), "Behavior of CFRP-strengthened RC beams with circular web openings in shear zones: Numerical study", Structures, 41, 1369-1389. https://doi.org/10.1016/j.istruc.2022.05.061.
  52. Ozkilic, Y.O., Gemi, L., Madenci, E. and Aksoylu, C. (2022), "Effects of stirrup spacing on shear performance of hybrid composite beams produced by pultruded GFRP profile infilled with reinforced concrete", Archives Civil Mech. Eng., 23(1), 36.
  53. Ozkilic, Y.O., Gemi, L., Madenci, E., Aksoylu, C. and Kalkan, I. (2022), "Effect of the GFRP wrapping on the shear and bending Behavior of RC beams with GFRP encasement", Steel Compos. Struct., 45(2), 193-204.
  54. Pang, B., Zheng, H., Jin, Z., Hou, D., Zhang, Y., Song, X. and Li, M. (2024), "Inner superhydrophobic materials based on waste fly ash: Microstructural morphology of microetching effects", Compos. Part B: Eng., 268, 111089. https://doi.org/10.1016/j.compositesb.2023.111089.
  55. Rahimipour, A., Hejazi, F., Vaghei, R. and Jaafar, M.S. (2016), "Finite element development of a Beam-column connection with CFRP sheets subjected to monotonic and cyclic loading", Comput. Concrete, 18(6), 1083-1096.
  56. Rasheed, H.A., Abdalla, J., Hawileh, R. and Al-Tamimi, A.K. (2017), "Flexural behavior of reinforced concrete beams strengthened with externally bonded Aluminum Alloy plates", Eng. Struct., 147, 473-485. https://doi.org/10.1016/j.engstruct.2017.05.067.
  57. Rasheed, H.A., Harrison, R.R., Peterman, R.J. and Alkhrdaji, T. (2010), "Ductile strengthening using externally bonded and near surface mounted composite systems", Compos. Struct., 92(10), 2379-2390. https://doi.org/10.1016/j.compstruct.2010.03.009.
  58. Ren, F., Liu, T., Chen, G., Xie, P., Xiong, M.X., Yuan, T. and Guo, S. (2021), "Flexural behavior and modelling of FRP-bar reinforced seawater sea sand concrete beams exposed to subtropical coastal environment", Construct. Build. Mater., 309, 125071. https://doi.org/10.1016/j.conbuildmat.2021.125071.
  59. Robert, M. and Benmokrane, B. (2013), "Combined effects of saline solution and moist concrete on long-term durability of GFRP reinforcing bars", Construct. Build. Mater., 38, 274-284. https://doi.org/10.1016/j.conbuildmat.2012.08.021.
  60. Sabau, C., Popescu, C., Sas, G., Schmidt, J.W., Blanksvard, T. and Taljsten, B. (2018), "Strengthening of RC beams using bottom and side NSM reinforcement", Compos. Part B: Eng., 149, 82-91. https://doi.org/10.1016/j.compositesb.2018.05.011.
  61. Saleh, Z., Goldston, M., Remennikov, A.M. and Sheikh, M.N. (2019), "Flexural design of GFRP bar reinforced concrete beams: An appraisal of code recommendations", J. Build. Eng., 25, 100794. https://doi.org/10.1016/j.jobe.2019.100794 .
  62. Sallam, H.E.D.M., Saba, A.A.M., Shahin, H.H. and Abdel-Raouf, H. (2004), "Prevention of peeling failure in plated beams", J. Adv. Concrete Technol., 2(3), 419-429. https://doi.org/10.3151/jact.2.419
  63. Shukri, A.A. and Jumaat, M.Z. (2016), "Simulating concrete cover separation in RC beams strengthened with near-surface mounted reinforcements", Construct. Build. Mater., 122, 1-11. https://doi.org/10.1016/j.conbuildmat.2016.06.048.
  64. Singh, A., Wang, Y., Zhou, Y., Sun, J., Xu, X., Li, Y. and Wang, X. (2023), "Utilization of antimony tailings in fiber-reinforced 3D printed concrete: A sustainable approach for construction materials", Construct. Build. Mater., 408, 133689. https://doi.org/10.1016/j.conbuildmat.2023.133689.
  65. Sumathi, A. (2017), "Study on behavior of RCC beams with externally bonded FRP members in flexure", Adv. Concrete Construct., 5(6), 625. https://doi.org/10.12989/acc.2017.5.6.625.
  66. Sun, L., Wang, C., Zhang, C., Yang, Z., Li, C. and Qiao, P. (2022), "Experimental investigation on the bond performance of sea sand coral concrete with FRP bar reinforcement for marine environments", Adv. Struct. Eng., 26(3), 533-546. https://doi.org/10.1177/13694332221131153.
  67. Teng, J.G. and Yao, J. (2007), "Plate end debonding in FRP-plated RC beams-II: Strength model", Eng. Struct., 29(10), 2472-2486. https://doi.org/10.1016/j.engstruct.2006.11.023.
  68. Teng, J.G., Chen, J.F., Smith, S.T. and Lam, L. (2003), "Behaviour and strength of FRP-strengthened RC structures: a state-of-the-art review", Proceedings of the Institution of Civil Engineers-Structures and Buildings, 156(1), 51-62. https://doi.org/10.1680/stbu.2003.156.1.51
  69. Teng, J.G., Smith, S.T., Yao, J. and Chen, J.F. (2003), "Intermediate crack-induced debonding in RC beams and slabs", Construct. Build. Mater., 17(6-7), 447-462. https://doi.org/10.1016/S0950-0618(03)00043-6.
  70. Teng, J.G., Yu, T., Dai, J.G. and Chen, G.M. (2011), "FRP composites in new construction: current status and opportunities", In Proceedings of 7th National Conference on FRP Composites in Infrastructure (Supplementary Issue of Industrial Construction), keynote presentation, Hangzhou, China.
  71. Teng, J.G., Zhang, S.S. and Chen, J.F. (2016), "Strength model for end cover separation failure in RC beams strengthened with near-surface mounted (NSM) FRP strips", Eng. Struct., 110, 222-232. https://doi.org/10.1016/j.engstruct.2015.11.049.
  72. Vedernikov, A., Gemi, L., Madenci, E., Ozkilic, Y.O., Yazman, S., Gusev, S. and Safonov, A. (2022), "Effects of high pulling speeds on mechanical properties and morphology of pultruded GFRP composite flat laminates", Compos. Struct., 301, 116216. https://doi.org/10.1016/j.compstruct.2022.116216.
  73. Wang, H.T. and Wu, G. (2018a), "Crack propagation prediction of double-edged cracked steel beams strengthened with FRP plates", Thin-Wall. Struct., 127, 459-468. https://doi.org/10.1016/j.tws.2018.02.018.
  74. Wang, H.T. and Wu, G. (2018b), "Bond-slip models for CFRP plates externally bonded to steel substrates", Compos. Struct., 184, 1204-1214. https://doi.org/10.1016/j.compstruct.2017.10.033.
  75. Wang, Y.Q., Yuan, H.X., Chang, T., Du, X.X. and Yu, M. (2017), "Compressive buckling strength of extruded aluminium alloy I-section columns with fixed-pinned end conditions", Thin-Wall. Struct., 119, 396-403. https://doi.org/10.1016/j.tws.2017.06.034.
  76. Wang, X., Li, L., Xiang, Y., Wu, Y. and Wei, M. (2024), "The influence of basalt fiber on the mechanical performance of concrete-filled steel tube short columns under axial compression", Front. Mater., 10. https://doi.org/10.3389/fmats.2023.1332269.
  77. Wang, Z., Zhao, X.L., Xian, G., Wu, G., Raman, R.S. and Al-Saadi, S. (2017), "Durability study on interlaminar shear behaviour of basalt-, glass-and carbon-fibre reinforced polymer (B/G/CFRP) bars in seawater sea sand concrete environment", Construct. Build. Mater., 156, 985-1004. https://doi.org/10.1016/j.conbuildmat.2017.09.045.
  78. Wu, T., Sun, Y., Liu, X. and Cao, Y. (2021), "Comparative study of the flexural behavior of steel fiber-reinforced lightweight aggregate concrete beams reinforced and prestressed with CFRP tendons", Eng. Struct., 233, 111901. https://doi.org/10.1016/j.engstruct.2021.111901.
  79. Wang, L., Yin, S., Zhu, J. and Huang, Z. (2023), "Flexural performance of BFRP reinforced seawater sea-sand concrete beams with TRE SIP forms under a dry-wet environment", Appl. Ocean Res., 130, 103442. https://www.sciencedirect.com/science/article/abs/pii/S0141118722003716.
  80. Xiao, J., Qiang, C., Nanni, A. and Zhang, K. (2017), "Use of sea-sand and seawater in concrete construction: Current status and future opportunities", Construct. Build. Mater., 155, 1101-1111. https://doi.org/10.1016/j.conbuildmat.2017.08.130.
  81. Xing, G.H., Chen, X., Huang, J., Zhang, Y., Ozbulut, O.E. and Chang, Z.Q. (2022), "Reinforced concrete beams strengthened in flexure with near-surface mounted 7075 aluminum alloy bars", J. Struct. Eng., 148(1), 04021242.
  82. Xing, G. and Ozbulut, O.E. (2016), "Flexural performance of concrete beams reinforced with aluminum alloy bars", Eng. Struct., 126, 53-65. https://doi.org/10.1016/j.engstruct.2016.07.032.
  83. Xing, G., Chang, Z. and Bai, Z. (2018), "Flexural behaviour of RC beams strengthened with near-surface-mounted BFRP bars", Mag. Concrete Res., 70(11), 570-582. https://doi.org/10.1680/jmacr.17.00227
  84. Xing, G., Chang, Z. and Ozbulut, O.E. (2018), "Behavior and failure modes of reinforced concrete beams strengthened with NSM GFRP or aluminum alloy bars", Struct. Concrete, 19(4), 1023-1035. https://doi.org/10.1002/suco.201700099
  85. Xing, G., Chang, Z. and Ozbulut, O.E. (2020), "Feasibility of using aluminum alloy bars as near-surface mounted reinforcement for flexural strengthening of reinforced concrete beams", Struct. Concrete, 21(4), 1557-1576. https://doi.org/10.1002/suco.201900361
  86. Yao, J. and Teng, J.G. (2007), "Plate end debonding in FRP-plated RC beams-I: Experiments", Eng. Struct., 29(10), 2457-2471. https://doi.org/10.1016/j.engstruct.2006.11.022.
  87. Yao, J., Teng, J.G. and Lam, L. (2005), "Experimental study on intermediate crack debonding in FRP-strengthened RC flexural members", Adv. Struct. Eng., 8(4), 365-396. https://doi.org/10.1260/136943305774353106
  88. Yu, X., Xing, G. and Chang, Z. (2020), "Flexural behavior of reinforced concrete beams strengthened with near-surface mounted 7075 aluminum alloy bars", J. Build. Eng., 31, 101393. https://doi.org/10.1016/j.jobe.2020.101393.
  89. Zhang, Q., Xiao, J., Liao, Q. and Duan, Z. (2019), "Structural behavior of seawater sea-sand concrete shear wall reinforced with GFRP bars", Eng. Struct., 189, 458-470. https://doi.org/10.1016/j.engstruct.2019.03.101.
  90. Zhang, S.S. and Teng, J.G. (2016), "End cover separation in RC beams strengthened in flexure with bonded FRP reinforcement: simplified finite element approach", Mater. Struct., 49, 2223-2236. https://doi.org/10.1617/s11527-015-0645-z
  91. Zhang, Z., Liu, Y.T., Li, L.Z. and Lu, Z.D. (2022), "The use of bolted side aluminum alloy plates for flexural capacity of reinforced concrete beams: An experimental investigation", Structures, 42, 417-433 https://doi.org/10.1016/j.istruc.2022.05.082.
  92. Zhou, C., Ren, D. and Cheng, X. (2017), "Shear-strengthening of RC continuous T-beams with spliced CFRP U-strips around bars against flange top", Struct. Eng. Mech., 64(1), 135-143.