Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF- 2021R1A2B5B02002599) and Inha University Research Grant.
References
- AISC (2010), "Specification for Structural Steel Buildings, ANSI / AISC 360-16", American Institute of Steel Construction.
- Aseem, A., Latif Baloch, W., Khushnood, R.A. and Mushtaq, A. (2019), "Structural health assessment of fire damaged building using non-destructive testing and micro-graphical forensic analysis: A case study", Case Stud. Constr. Mater., 11. https://doi.org/10.1016/j.cscm.2019.e00258.
- Asteris, P.G., Maraveas, C., Chountalas, A.T., Sophianopoulos, D.S. and Alam, N. (2022), "Fire resistance prediction of slim-floor asymmetric steel beams using single hidden layer ANN models that employ multiple activation functions", Steel Compos. Struct., 44(6), 769-788. https://doi.org/10.12989/scs.2022.44.6.769.
- Bailey, C. (1998), "Computer modelling of the corner compartment fire test on the large-scale Cardington test frame", J. Constr. Steel Res., 48(1), 27-45. https://doi.org/10.1016/S0143-974X(97)00078-3.
- CEN (2005), "Eurocode 3: Design of steel structures - Part 1-2: General rules - Structural fire design", J. Constr. Steel Res., 54(2).
- Choi, I.R. (2020), "High-temperature thermal properties of sprayed and infill-type fire-resistant materials used in steel-tube columns", Int. J. Steel Struct, 20(3). https://doi.org/10.1007/s13296-020-00322-8.
- Elghazouli, A.Y. and Izzuddin, B.A. (2004), "Realistic modeling of composite and reinforced concrete floor slabs under extreme loading. II: verification and application", J. Struct. Eng., 130(12), 1985-1996. American Society of Civil Engineers. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:12(1985).
- European Standard (2002), Eurocode 1: Actions on Structures - Part 1-2: General Actions - Actions on Structures Exposed to Fire. Eurocode 1: Actions on Structures.
- Franssen, J.M. (2005), "SAFIR: A thermal/structural program for modeling structures under fire", Eng. J.
- Gao, W.Y., Dai, J.G., Teng, J.G. and Chen, G.M. (2013), "Finite element modeling of reinforced concrete beams exposed to fire", Eng. Struct., 52. https://doi.org/10.1016/j.engstruct.2013.03.017.
- Hajiloo, H., Adelzadeh, M. and Green, M. (2017), Collapse of the Plasco Tower in Fire.
- Huang, Z., Burgess, I.W. and Plank, R.J. (2000), "Three-dimensional analysis of composite steel-framed buildings in fire", J. Struct. Eng., 126(3), 389-397. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(389).
- Jiang, L. and Usmani, A. (2018), "Computational performance of beam-column elements in modelling structural members subjected to localised fire", Eng. Struct., 156, 490-502. https://doi.org/10.1016/J.ENGSTRUCT.2017.11.008.
- Khan, A.A., Domada, R.V.V., Huang, X., Khan, M.A. and Usmani, A. (2022a), "Modeling the collapse of the Plasco Building. Part I: Reconstruction of fire", Build. Simul., 15(4). https://doi.org/10.1007/s12273-021-0825-4.
- Khan, A.A., Khan, M.A., Zhang, C., Jiang, L. and Usmani, A. (2022b), "OpenFIRE: An open computational framework for structural response to real fires", Fire Technol., 58(2). https://doi.org/10.1007/s10694-021-01184-0.
- Khan, M.A., Khan, A.A., Usmani, A.S. and Huang, X. (2022c), "Can fire cause the collapse of Plasco Building: A numerical investigation", Fire Mater., 46(3). https://doi.org/10.1002/fam.3003.
- Lennon, T. and Moore, D. (2003), "The natural fire safety concept-full-scale tests at Cardington", Fire Saf J., 38(7), 623-643. https://doi.org/10.1016/S0379-7112(03)00028-6.
- Lie, T.T. (1992). Structural Fire Protection: Manual of Practice. American Society of Civil Engineers.
- Lyu, X., Wang, W., Li, H., Li, J. and Yu, Y. (2024), "Numerical and experimental analysis on the axial compression performance of T-shaped concrete-filled thin-walled steel", Steel Compos. Struct., 50(4), 383-401. https://doi.org/10.12989/scs.2024.50.4.383.
- Martinez, J. and Jeffers, A.E. (2021), "Structural response of steel-concrete composite floor systems under traveling fires", J. Constr. Steel Res., 186. https://doi.org/10.1016/j.jcsr.2021.106926.
- Meacham, B., Engelhardt, M. and Kodur, V. (2009), "Collection of data on fire and collapse", Faculty of Architecture Building, Delft University of Technology." undefined.
- Medall, D., Ibanez, C., Espinos, A. and Romero, M.L. (2023), "Thermo-mechanical compression tests on steel-reinforced concrete-filled steel tubular stub columns with high performance materials", Steel Compos. Struct., 49(5), 533-546. https://doi.org/10.12989/scs.2023.49.5.533.
- Mortazavi, S.J., Mansouri, I., Awoyera, P.O. and Hu, J.W. (2022), "Comparison of thermal performance of steel moment and eccentrically braced frames", J. Build. Eng., 49, 104052. https://doi.org/10.1016/J.JOBE.2022.104052.
- Mortazavi, S.J., Mansouri, I., Awoyera, P.O. and Naser, M.Z. (2020), "Implementation of new elements and material models in OpenSees software to account for post-earthquacke fire damage", Struct., 27, 1777-1785. https://doi.org/10.1016/J.ISTRUC.2020.08.021.
- Naser, M.Z. (2019). "AI-based cognitive framework for evaluating response of concrete structures in extreme conditions", Eng. Appl. Artif. Intell., 81, 437-449. https://doi.org/10.1016/J.ENGAPPAI.2019.03.004.
- Perera, D., Upasiri, I.R., Poologanathan, K., Perampalam, G., O'Grady, K., Rezazadeh, M., Rajanayagam, H. and Hewavitharana T. (2022), "Fire performance analyses of modular wall panel designs with loadbearing SHS columns", Case Stud. Constr. Mater., 17, e01179. https://doi.org/10.1016/J.CSCM.2022.E01179.
- Prakash, P.R. and G. Srivastava. 2017a. "Efficient three dimensional nonlinear thermo-mechanical analysis of structures subjected to fire", Procedia Eng.
- Prakash, P.R. and Srivastava, G. (2017b), "Nonlinear analysis of reinforced concrete plane frames exposed to fire using direct stiffness method", 21(7), 1036-1050. SAGE PublicationsSage, https://doi.org/10.1177/1369433217737118.
- Purkiss, J.A. (2007), Fire Safety Engineering: Design of Structures. Butterworth-Heinemann.
- Rahal, N., Souici, A., Beghdad, H., Tehami, M., Djaffari, D., Sadoun, M. and Benmahdi, K. (2024), "Effects of shrinkage in composite steel-concrete beam subjected to fire", Steel Compos. Struct., 50(4), 375-382. https://doi.org/10.12989/scs.2024.50.4.375.
- Rose, P.S., Bailey, C.G., Burgess, I.W. and Plank. R.J. (1998), "Influence of floor slabs on the structural performance of the Cardington frame in fire", J. Constr. Steel Res., 46(13). https://doi.org/10.1016/S0143-974X(98)00131-X.
- Shayanfar, M., Abbasnia, R. and Khodam, A. (2014), "Development of a GA-based method for reliability-based optimization of structures with discrete and continuous design variables using OpenSees and Tcl", Finite Elem. Anal. Des, 90, 61-73. https://doi.org/10.1016/J.FINEL.2014.06.010.
- Srivastava, G. and Ravi Prakash, P. (2017), "An integrated framework for nonlinear analysis of plane frames exposed to fire using the direct stiffness method", Comput. Struct., 190, 173-185. https://doi.org/10.1016/J.COMPSTRUC.2017.05.013.
- Suntharalingam, T., Gatheeshgar, P., Upasiri, I., Poologanathan, K., Nagaratnam, B., Corradi, M. and Nuwanthika, D. (2021), "Fire performance of innovative 3D printed concrete composite wall panels - A Numerical study", Case Stud. Constr. Mater., 15, e00586. https://doi.org/10.1016/J.CSCM.2021.E00586.
- Wang, H., Dembsey, N.A., Meacham, B.J., Liu, S. and Simeoni, A. (2021), "Comparison of sensitivity matrix method, power function-based response surface method, and artificial neural network in the analysis of building fire egress performance", J. Build. Eng., 43, 102860. https://doi.org/10.1016/J.JOBE.2021.102860.
- Wang, L., Zhao, W., Liu, C. and Pang, Q. (2023), "Numerical study on the impact response of SC walls under elevated temperatures", Steel Compos. Struct, 46(3), 345-352. https://doi.org/10.12989/scs.2023.46.3.345.
- Wang, Y.C. (2000), "An analysis of the global structural behaviour of the Cardington steel-framed building during the two BRE fire tests", Eng. Struct., 22(5), 401-412. https://doi.org/10.1016/S0141-0296(98)00127-8.
- Yang, D., Liu, F., Huang, S.S. and Yang, H. (2020), "ISO 834 standard fire test and mechanism analysis of square tubed-reinforced-concrete columns", J. Constr. Steel Res., 175. https://doi.org/10.1016/j.jcsr.2020.106316.
- Zhu, A., Wu, H. and Liu, J. (2022), "Feasibility study on novel fire-resistant coating materials", J. Mater. Civ. Eng., 34(6), 04022080. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004233/ASSET/29638C59-6DE4-433D-9859-806A26CBCC56/ASSETS/IMAGES/LARGE/FIGURE10.JPG.