DOI QR코드

DOI QR Code

Study on bearing capacity of combined confined concrete arch in large-section tunnel

  • Jiang Bei (State Key Laboratory for Tunnel Engineering, China University of Mining & Technology-Beijing) ;
  • Xu Shuo (State Key Laboratory for Tunnel Engineering, China University of Mining & Technology-Beijing) ;
  • Wang Qi (State Key Laboratory for Tunnel Engineering, China University of Mining & Technology-Beijing) ;
  • Xin Zhong Xin (Geotechnical and Structural Engineering Research Center, Shandong University) ;
  • Wei Hua Yong (State Key Laboratory for Tunnel Engineering, China University of Mining & Technology-Beijing) ;
  • Ma Feng Lin (State Key Laboratory for Tunnel Engineering, China University of Mining & Technology-Beijing)
  • 투고 : 2022.04.19
  • 심사 : 2024.04.03
  • 발행 : 2024.04.25

초록

There are many challenges in the construction of large-section tunnels, such as extremely soft rock and fractured zones. In order to solve these problems, the confined concrete support technology is proposed to control the surrounding rocks. The large-scale laboratory test is carried out to clarify mechanical behaviours of the combined confined concrete and traditional I-steel arches. The test results show that the bearing capacity of combined confined concrete arch is 3217.5 kN, which is 3.12 times that of the combined I-steel arch. The optimum design method is proposed to select reasonable design parameters for confined concrete arch. The parametric finite element (FE) analysis is carried out to study the effect of the design factors via optimum design method. The steel pipe wall thickness and the longitudinal connection ring spacing have a significant effect on the bearing capacity of the combined confined concrete arch. Based on the above research, the confined concrete support technology is applied on site. The field monitoring results shows that the arch has an excellent control effect on the surrounding rock deformation. The results of this research provide a reference for the support design of surrounding rocks in large-section tunnels.

키워드

과제정보

This work was supported by the National Key Research and Development Program of China (Grant No. 2023YFC3805700); the National Natural Science Foundation of China (Grant Nos. 42077267 and 42277174 and 52074164); the Natural Science Foundation of Shandong Province, China (Grant No. ZR2020JQ23). China University of Mining and Technology (Beijing) Top Innovative Talent Cultivation Fund for Doctoral Students (Grant No. BBJ2023048).

참고문헌

  1. Bouras Y. and Vrcelj, Z. (2020), "Out-of-plane stability of concrete-filled steel tubular arches at elevated temperatures", Int. J. Mech. Sci., 187, 105916. https://doi.org/10.1016/j.ijmecsci.2020.105916.
  2. Han L.H., Yao G.H. and Tao Z. (2007), "Performance of concrete-filled thin-walled steel tubes under pure torsion", Thin Wall Struct., 45, 24-36. https://doi.org/ 10.1016/j.tws.2007.01.008.
  3. Jiang, B. (2016), "Control mechanism and application of confined concrete for super large section tunnel on weak surrounding rock", Ph.D. Dissertation, Shandong University, Jinan. (in Chinese).
  4. Jiang, B., Xin, Z.X., Zhang, X.F., Deng, Y.S., Wang, M.Z., Li, S.D. and Ren, W.T. (2023), "Mechanical properties and influence mechanism of confined concrete arches in high-stress tunnels", Int. J. Min. Sci. Technol., 33(7), 829-41. https://doi.org/10.1016/j.ijmst.2023.03.008.
  5. Jiang, B., Wang, M.Z., Wang, Q., Guo, Y.R., Deng, Y.S., Xu, C.J. and Yao L.D. (2024), "Theoretical study of bearing capacity calculation model for multi segment confned concrete arch and design method in underground engineering", Environ. Earth Sci., 83, 203. https://doi.org/10.1007/s12665-024-11499-0.
  6. Jiang, B., Ma, F.L., Wang, Q., Gao, H.K., Zhai, D.H., Deng, Y.S., Xu, C.J. and Yao, L.D. (2024), "Drilling-based measuring method for the c-φ parameter of rock and its field application", Int. J. Min. Sci. Technol., 34(1), 65-76. https://doi.org/10.1016/j.ijmst.2023.06.005.
  7. Naghipour M., Yousofizinsaz G. and Shariati M. (2020), "Experimental study on axial compressive behavior of welded built-up CFT stub columns made by cold-formed sections with different welding lines", Steel Compos. Struct., 34(3), 347-359. https://doi.org/ 10.12989/scs.2020.34.3.347.
  8. Oyawa W.O., Gathimba N.K. and Mang'uriu G.N. (2016), "Structural response of composite concrete filled plastic tubes in compression", Steel Compos. Struct., 21(3), 589-604. https://doi.org/10.12989/scs.2016.21.3.589.
  9. Piquer A., Ibanez C. and Hernandez-Figueirido D. (2019), "Structural response of concrete-filled round-ended stub columns subjected to eccentric loads", Eng. Struct., 184, 318-328. https://doi.org/10.1016/j.engstruct.2019.01.091.
  10. Shariati M., Grayeli M., Shariati A. and Naghipour M. (2020), "Performance of composite frame consisting of steel beams and concrete filled tubes under fire loading", Steel Compos. Struct., 36(5), 587-602. https://doi.org/10.12989/scs.2020.36.5.587.
  11. Wang Q., Jiang B., Shao X., Wang F.Q., Li S.C., Guo N.B., Wang B.Q., Xiao G.Q. and Pan R. (2017), "Mechanical properties of square steel confined concrete quantitative pressure-relief arch and its application in a deep mine", Int. J. Min. Reclam. Environ., 31(1), 1-23. http://dx.doi.org/10.1080/17480930.2015.1105648.
  12. Wang Q., Jiang B., Pan R., Li S.C., He M.C., Sun H.B., Qin Q., Yu H.C. and Luan Y.C. (2018), "Failure mechanism of surrounding rock with high stress and confined concrete support system", Int. J. Rock Mech. Min. Sci., 102, 89-100. https://doi.org/10.1016/j.ijrmms.2018.01.020.
  13. Wang Q., Luan Y.C., Jiang B., Li S.C., He M.C., Sun H.B., Qin Q., and Lu W. (2019), "Study on key technology of tunnel fabricated arch and its mechanical mechanism in the mechanized construction", Tunn. Undergr. Space Technol., 83, 187-194. https://doi.org/10.1016/j.tust.2018.10.002.
  14. Wang Q., Xu S., Xin Z.X., He M.C., Wei H.Y. and Jiang, B. (2022a), "Mechanical properties and field application of constant resistance energy-absorbing anchor cable", Tunn. Undergr. Space Technol., 125, 104526. https://doi.org/10.1016/j.tust.2022.104526.
  15. Wang Q., Xu S., He M.C., Jiang B., Wei, H.Y. and Wang, Y. (2022b), "Dynamic mechanical characteristics and application of constant resistance energy-absorbing supporting material", Int. J. Min. Sci. Techno., 32, 447-458. https://doi.org/10.1016/j.ijmst.2022.03.005.
  16. Wei J.J. and Jiang B.S. (2013), "Experimental study on structural property of contractible concrete-filled steel pipe support", J. Min. Saf. Eng., 30(6), 805-811 (in Chinese).
  17. Zang D.S. and Wei L. (2001), "Research and laboratory test of concrete filled steel pipe bracket", Mine Constr. Technol., 22(6), 25-28 (in Chinese). https://doi.org/10.19458/j.cnki.cn11-2456/td.2001.06.009.