DOI QR코드

DOI QR Code

Response transformation factors and hysteretic energy distribution of reinforced concrete braced frames

  • Herian A. Leyva (Facultad de Ingenieria, Arquitectura y Diseno, Universidad Autonoma de Baja California) ;
  • Eden Bojorquez (Facultad de Ingenieria, Universidad Autonoma de Sinaloa) ;
  • Juan Bojorquez (Facultad de Ingenieria, Universidad Autonoma de Sinaloa) ;
  • Alfredo Reyes (Facultad de Ingenieria, Universidad Autonoma de Sinaloa) ;
  • Fabrizio Mollaioli (Department of Structural and Geotechnical Engineering, Sapienza University of Rome) ;
  • Omar Payan (Department of Mechanical and Mechatronic Engineering, Tecnologico Nacional de Mexico Campus Culiacan) ;
  • Leonardo Palemon (Departamento de Ingenieria Civil, Universidad Autonoma del Carmen) ;
  • Manual A. Barraza (Facultad de Ingenieria, Arquitectura y Diseno, Universidad Autonoma de Baja California)
  • Received : 2023.01.17
  • Accepted : 2024.04.19
  • Published : 2024.05.10

Abstract

Most of existing buildings in Mexico City are made of reinforced concrete (RC), however, it has been shown that they are very susceptible to narrow-band long duration ground motions. In recent years, the use of dual systems composed by Buckling Restrained Braces (BRB) has increased due to its high energy dissipation capacity under reversible cyclical loads. Therefore, in this work the behavior of RC buildings with BRB is studied in order to know their performance, specifically, the energy distribution through height and response transformation factors between the RC and simplified systems are estimated. For this propose, seven RC buildings with different heights were designed according to the Mexico City Seismic Design Provisions (MCSDP), in addition, equivalent single degree of freedom (SDOF) systems were obtained. Incremental dynamic analyses on the buildings under 30 narrow-band ground motions in order to compute the relationship between normalized hysteretic energy, maximum inter-story drift and roof displacement demands were performed. The results shown that the entire structural frames participate in energy dissipation and their distribution is independent of the global ductility. The results let propose energy distribution equations through height. Finally, response transformation factors between the SDOF and multi degree of freedom (MDOF) systems were developed aimed to propose a new energy-based approach of BRB reinforced concrete buildings.

Keywords

Acknowledgement

This research was developed thanks to the economic support provided by the Consejo Nacional de Humanidades, Ciencia y Tecnologia (CONAHCYT) in Mexico, under Grant Ciencia de Frontera CF-2023-G-1636 and Ciencia Basica 287103 and for the scholarship given to the postPhD researcher. The financial support given by the Universidad Autonoma de Sinaloa under grant PROFAPI 2022 and PRODEP-SEP under project UABC-PTC-806 also are appreciated.

References

  1. Akbas, B., Shen, J. and Hao, H. (2001), "Energy approach in performance-based design of steel moment resisting frames for basic safety objective", Struct. Des. Tall Build., 10(3), 193-217. https://doi.org/10.1002/tal.172.
  2. Akiyama, H. (1985), Earthquake-Resistant Limit-State Design for Buildings, University of Tokyo Press.
  3. Arroyo, D. and Ordaz, M. (2007), "Hysteretic energy demands for SDOF systems subjected to narrow band earthquake ground motion, applications to the lake bed zone of Mexico City", J. Earthq. Eng., 11(2), 147-165. https://doi.org/10.1080/13632460601123131.
  4. Benavent-Climent, A. (2011), "An energy-based method for seismic retrofit of existing frames using hysteretic dampers", Soil Dyn. Earthq. Eng., 31(10), 1385-1396. https://doi.org/10.1016/j.soildyn.2011.05.015.
  5. Benavent-Climent, A., Donaire-Avila, J. and Mollaioli, F. (2021), "Key points and pending issues in the energy-based seismic design approach", Proceedings of the International Workshop on Energy-Based Seismic Engineering, IWEBSE 2021, May.
  6. Benavent-Climent, A., Pujades, L.G. and Lopez-Almansa, F. (2002), "Design energy input spectra for moderate-seismicity regions", Earthq. Eng. Struct. Dyn., 31(5), 1151-1172. https://doi.org/10.1002/eqe.153.
  7. Bojorquez, E. and Ruiz, S. (2004), "Strength reduction for the valley of Mexico taking into account low cycle fatigue effects", Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August.
  8. Bojorquez, E., Lopez-Barraza, A., Reyes-Salazar, A., Ruiz, S.E., Ruiz-Garcia, J., Formisano, A., ... & Bojorquez, J. (2019), "Improving the structural reliability of steel frames using posttensioned connections", Adv. Civil Eng., 2019, Article ID 8912390. https://doi.org/10.1155/2019/8912390.
  9. Bojorquez, E., Reyes-Salazar, A., Teran-Gilmore, A. and Ruiz, S. (2010), "Energy-based damage index for Steel structures", Steel. Compos. Struct., 10(4), 343-360. http://doi.org/10.12989/scs.2010.10.4.343.
  10. Bojorquez, E., Ruiz, S. and Teran-Gilmore, A. (2008), "Reliability-based evaluation of steel structures using energy concepts", Eng. Struct., 30(6), 1475-1759. https://doi.org/10.1016/j.engstruct.2007.11.014.
  11. Bojorquez, E., Teran-Gilmore, A., Ruiz, S. and Reyes-Salazar, A. (2011), "Evaluation of structural reliability of Steel frames: Inter-story drift versus plastic hysteretic energy", Earthq. Spectra, 27(3), 661-682. https://doi.org/10.1193/1.3609856
  12. Carr, A. (2015), "Volume 3: User manual for the 3-Dimensional Version Ruaumoko3D", Department of Civil Engineering, University of Canterbury, New Zealand.
  13. Cheng, Y., Lucchini, A. and Mollaioli, F. (2014), "Proposal of new ground-motion prediction equations for elastic input energy spectra", Earthq. Struct., 7(4), 485-510. https://doi.org/10.12989/eas.2014.7.4.485.
  14. Cheng, Y., Lucchini, A. and Mollaioli, F. (2020), "Ground-motion prediction equations for constant-strength and constant-ductility input energy spectra", Bull. Earthq. Eng., 18(1), 37-45. http://doi.org/10.1007/s10518-019-00725-x.
  15. Cheng, Y., Mollaioli, F. and Donaire-Avila, J. (2021), "Characterization of dissipated energy demand", Soil Dyn. Earthq. Eng., 147, 106725. https://doi.org/10.1016/j.soildyn.2021.106725.
  16. Choi, H. and Kim, H. (2006), "Energy-based seismic design of buckling-restrained braced frames using hysteretic energy spectrum", Eng. Struct., 28(2), 304-311. https://doi.org/10.1016/j.engstruct.2005.08.008.
  17. Choi, H., Kim, J. and Chung, L. (2006), "Seismic design of buckling-restrained braced frames based on a modified energy-balance concept", Can. J. Civil Eng., 33(10), 1251-1260. https://doi.org/10.1139/l06-068.
  18. Chou, C. and Uang, C.M. (2000), "Establishing absorbed energy spectra-an attenuation approach", Earthq. Eng. Struct. Dyn., 29(10), 1441-1455. https://doi.org/10.1002/1096-9845(200010)29:10<1441::AID-EQE967>3.0.CO,2-E.
  19. Dogru, S., Aksar, B., Akbas, B., Shen, J. and Doran, B. (2018), Seismic Energy Demands of Inverted V-braced Frames, Seismic Isolation, Structural Health Monitoring and Performance Based Seismic Design in Earthquake Engineering, Springer, Cham.
  20. Donaire-Avila, J., Benavent-Climent, A., Lucchini, A. and Mollaioli, F. (2017), "Energy-based seismic design methodology: A preliminary approach", Proceedings of the 16th World Conference on Earthquake, Santiago, Chile, January.
  21. Esteva, L. (1987), "Earthquake engineering research and practice in Mexico after the 1985 earthquakes", Bull. NZ Nat. Soc. Earth. Eng., 20(3), 159-200. https://doi.org/10.5459/bnzsee.20.3.159-200.
  22. Fahnestock, L., Ricles, J. and Sause, R. (2007), "Experimental evaluation of a large-scale buckling-restrained braced frame", J. Struct. Eng., 133(9), 1205-1214. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:9(1205).
  23. Franke, K., Candia, G., Mayoral, J., Wood, C., Montgomery, J., Hutchinson, T. and Morales-Velez, A. (2019), "Observed building damage patterns and foundation performance in Mexico City following the 2017 M7.1 Puebla-Mexico City earthquake", Soil Dyn. Earth. Eng., 125, 105708. https://doi.org/10.1016/j.soildyn.2019.105708.
  24. Guerrero, H., Ji, T., Escobar, J. and Teran-Gilmore, A. (2018), "Effects of buckling-restrained braces on reinforced concrete precast models subjected to shaking table excitation", Eng. Struct., 163, 294-310. https://doi.org/10.1016/j.engstruct.2018.02.055.
  25. Guerrero, H., Teran-Gilmore, A., Ji, T. and Escobar, J. (2017), "Evaluation of the economic benefits of using buckling-restrained braced in hospital structures located in very soft soil", Eng. Struct., 136, 406-419. https://doi.org/10.1016/j.engstruct.2017.01.038.
  26. Housner, G. (1956), "Limit design of structures to resist earthquakes", Proceedings of the First World Conference on Earthquake Engineering, Oakland, California.
  27. Khampanit, A., Leelataviwat, S., Kochanin, J. and Warnitchai, P. (2014), "Energy-based seismic strengthening design of non-ductile reinforced concrete frames using buckling-restrained braces", Eng. Struct., 81, 110-122. https://doi.org/10.1016/j.engstruct.2014.09.033.
  28. Leyva, H., Bojorquez. J., Bojorquez, E., Reyes-Salazar, A., Carrillo, J. and Lopez-Almansa, F. (2021), "Multi-objective seismic design of BRBs-reinforced concrete buildings using genetic algorithms", Struct. Multidisc. Optim., 64(4), 2097-2112. https://doi.org/10.1007/s00158-021-02965-5.
  29. Lopez-Barraza, A., Ruiz, S., Reyes-Salazar, A. and Bojorquez, E. (2016), "Demands and distribution of hysteretic energy in moment resistant self-centering steel frames", Steel Compos. Struct., 20(5), 1155-1171. http://doi.org/10.12989/scs.2016.20.5.1155.
  30. Mezgebo, M. and Lui, E. (2017), "A new methodology for energy-based seismic design of steel moment frames", Earth. Eng. Eng. Vib., 16(1), 131-152. https://doi.org/10.1007/s11803-017-0373-1.
  31. NTC-S-17 (2017), Mexico City Building Standards for Seismic Design, Gaceta Oficial de la Ciudad de Mexico, Normas Tecnicas Complementarias para Diseno por Sismo, Mexico. (in Spanish)
  32. Otani, S. and Sozen, M.A. (1972), "Behavior of multistory reinforced concrete frames during earthquakes", Structural Research Series No. 392, University of Illinois at Urbana-Champaign, Urbana, IL.
  33. Pan, Y., An, R., Bai, J., Yan, X. and Jin, S. (2019), "Seismic design and performance analysis of buckling-restrained braced RC frame structures", Struct. Des. Tall Spec. Build., 28(15), e1661. https://doi.org/10.1002/tal.1661.
  34. Park, Y. and Ang, A. (1985), "Mechanistic seismic damage model for reinforced concrete", J. Struct. Eng., 111(4), 722-739. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(722).
  35. Quinde, P., Reinoso, E. and Teran-Gilmore, A. (2016), "Inelastic seismic energy spectra for soft soils: Application to Mexico City", Soil Dyn. Earth. Eng., 89, 198-207. https://doi.org/10.1016/j.soildyn.2016.08.004.
  36. Rahnavard, R., Naghavi, M., Aboudi, M. and Suleiman, M. (2018), "Investigating modeling approaches of buckling-restrained braces under cyclic loads", Case Stud. Constr. Mater., 8, 476-488. https://doi.org/10.1016/j.cscm.2018.04.002.
  37. Rodriguez, M. and Ariztizaval, J. (1999), "Evaluation of a seismic damage parameter", Earth. Eng. Struct. Dyn., 29(5), 463-477. https://doi.org/10.1002/(SICI)1096-9845(199905)28:5<463::AID-EQE818>3.0.CO,2-V.
  38. Ruiz-Garcia, J. and Garcia, V. (2007), "Evaluacion de contraventeos restringidos contra pandeo como opcion de refuerzo para edificios de acero en zonas sismicas", Cien. Nico., 49, 187-205.
  39. SASID (2020), System for Seismic Design Actions, Building Safety Institute, Mexico City Government. (in Spanish)
  40. Tena-Colunga, A., Hernandez-Ramirez, H., Godinez-Dominguez, E.A., Perez-Rocha, L.E., Grande-Vega, A. and Urbina-Californias, L.A. (2020), "Performance of the built environment in Mexico City during the September 19, 2017 earthquake", Int. J. Disast. Risk Reduct., 51, 101787. https://doi.org/10.1016/j.ijdrr.2020.101787.
  41. Teran-Gilmore, A. (1996), "Performance-based earthquake-resistant design of framed buildings using energy concepts", PhD Thesis, University of California, Berkley.
  42. Teran-Gilmore, A. (2001), "Consideraciones de uso de la energia plastica en el diseno sismico", Revista de Ingenieria Sismica, 65, 81-110. (in Spanish) https://doi.org/10.18867/ris.65.190
  43. Teran-Gilmore, A. and Jirsa, J. (2005), "A damage model for practical seismic design that accounts for low cycle fatigue", Earthq. Spectra, 21(3), 803-832. https://doi.org/10.1193/1.1979500.
  44. Teran-Gilmore, A. and Ruiz-Garcia, J. (2011), "Comparative seismic performance of steel frames retrofitted with buckling-restrained braces through the application of force-based and displacement-based approaches", Soil Dyn. Earth. Eng., 31(3), 478-490. https://doi.org/10.1016/j.soildyn.2010.11.003.
  45. Tremblay, R., Bolduc, P., Nevilley, R. and DeVall, R. (2006), "Seismic testing and performance of buckling restrained bracing systems", Can. J. Civil Eng., 33(2), 183-198. https://doi.org/10.1139/l05-103.
  46. Uang, C. and Bertero, V. (1990), "Evaluation of seismic energy in structures", Earthq. Eng. Struct. Dyn., 19(1), 77-90. https://doi.org/10.1002/eqe.4290190108.
  47. Uang, C. and Nakashima, M. (2004). Steel Buckling-Restrained Braced Frames, Earthquake Engineering.
  48. Vamvatsikos, D. and Cornell, C. (2002), "Incremental dynamic analysis", Earthq. Eng. Struct. Dyn., 31(3), 491-514. https://doi.org/10.1002/eqe.141.