References
- Ahmed, A. and Sluys, L.J. (2013), "A three-dimensional progressive failure model for laminated composite plates subjected to transverse loading", Eng. Fract. Mech., 114, 69-91. https://doi.org/10.1016/j.engfracmech.2013.10.004.
- Bakshi, K. and Chakravorty, D. (2014), "Geometrically linear and nonlinear first-ply failure loads of composite cylindrical shells", J. Eng. Mech., 140(12), 1-10. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000808.
- Belkacem, A., Tahar, H.D., Abderrezak, R. Amine, B.M., Mohamed, Z. and Boussad, A. (2018), "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., 65(6), 761-769. https://doi.org/10.12989/sem.2018.66.6.761.
- Biswas, D. and Ray, C. (2019), "Effect of hybridisation in laminated composites on the first ply failure behaviour: Experimental and numerical studies", Int. J. Mech. Sci., 161, 105057. https://doi.org/10.1016/j.ijmecsci.2019.105057.
- Chatterjee, D., Ghosh, A. and Chakravorty, D. (2021a), "First ply failure behaviour of laminated composite skew plates of various edge conditions", Mech. Compos. Mater., 57(5), 699-716. https://doi.org/10.1007/s11029-021-09989-4.
- Chatterjee, D., Ghosh, A. and Chakravorty, D. (2021b), "Nonlinear first ply failure study of laminated composite skew plates", Mater. Today Proc., 45, 4925-4930. https://doi.org/10.1016/j.matpr.2021.01.370.
- Chatterjee, D., Ghosh, A. and Chakravorty, D. (2021c), "Finite element prediction of first-ply failure loads of composite thin skewed hypar shells using nonlinear strains", Thin Wall. Struct., 167, 108159. https://doi.org/10.1016/j.tws.2021.108159.
- Chen, J.F., Morozov, E.V. and Shankar, K. (2014), "Simulating progressive failure of composite laminates including in-ply and delamination damage effects", Compos. Part A, 61, 185-200. https://doi.org/10.1016/j.compositesa.2014.02.013.
- Dong, H. and Wang, J. (2015), "Simulating progressive failure of composite laminates including in-ply and delamination damage effects", Compos. Struct., 128, 234-240. https://doi.org/10.1016/j.compstruct.2015.03.005.
- Ellul, B., Camilleri, D. and Betts, J.C. (2014), "A progressive failure analysis applied to fibre-reinforced composite plates subject to out of plane bending", Mech. Compos. Mater., 49(6), 605-620. https://doi.org/10.1007/s11029-013-9377-8.
- Falkowicz, K. (2023), "Experimental and numerical failure analysis of thin-walled composite plates using progressive failure analysis", Compos. Struct., 305, 116474. https://doi.org/10.1016/j.compstruct.2022.116474.
- Gadade, A.M., Lal, A. and Singh, B.N. (2016), "Finite element implementation of Puck's failure criterion for failure analysis of laminated plate subjected to biaxial loadings", Aerosp. Sci. Technol., 55, 227-241. https://doi.org/10.1016/j.ast.2016.05.001.
- Ghannadpour, S.A.M. and Abdollahzadeh, N. (2020), "Progressive failure analysis of thick imperfect composite plates using nonlinear plate theory", Int. J. Nonlin. Mech., 121, 103292. https://doi.org/10.1016/j.ijnonlinmec.2019.103292.
- Ghannadpour, S.A.M. and Shakeri, M. (2020), "Application of new energy-based collocation method for nonlinear progressive damage analysis of imperfect composite plates", Thin Wall. Struct., 147, 106369. https://doi.org/10.1016/j.tws.2019.106369.
- Ghannadpour, S.A.M. and Kurkaani, A. (2019), "Combined effects of end-shortening strain, lateral pressure load and initial imperfection on ultimate strength of laminates: Nonlinear plate theory", Steel Compos. Struct., 33(2), 245-259. https://doi.org/10.12989/scs.2019.33.2.245.
- Ghannadpour, S.A.M., Barvaj, A.K. and Ovesy, H.R. (2021), "Predicting the nonlinear damage response of imperfect laminates using linear material degradation model and a semi-analytical technique", Int. J. Struct. Stab. Dyn., 21(10), 2150141. https://doi.org/10.1142/S0219455421501418.
- Ghannadpour, S.A.M., Shakeri, M. and Barvaj, A.K. (2018), "Ultimate strength estimation of composite plates under combined in-plane and lateral pressure loads using two different numerical methods", Steel Compos. Struct., 29(6), 785-802. https://doi.org/10.12989/scs.2018.29.6.785
- Ghosh, A. and Chakravorty, D. (2014), "Prediction of progressive failure behaviour of composite skewed hypar shells using finite element method", J. Struct., 2014, Article ID 147578. https://doi.org/10.1155/2014/147578.
- Ghosh, A. and Chakravorty, D. (2019), "Application of FEM on first ply failure of composite hypar shells with various edge conditions", Steel Compos. Struct., 32(4), 423-441. https://doi.org/10.12989/scs.2019.32.4.423.
- Ghosh, A. and Chakravorty, D. (2020), "FEM analysis of progressive failure for composite hypar shells", Strength Mater., 52, 507-520. https://doi.org/10.1007/s11223-020-00202-w.
- Houmat, A. (2015), "Nonlinear free vibration analysis of variable stiffness symmetric skew laminates", Eur. J Mech. A/Solid., 50, 70-75. https://doi.org/10.1016/j.euromechsol.2014.10.008.
- Joshi, R., Pal, P. and Duggal, S.K. (2020), "Ply-by-ply failure analysis of laminates using finite element method", Eur. J. Mech. A/Solid., 81, 103964. https://doi.org/10.1016/j.euromechsol.2020.103964.
- Kam, T.Y., Sher, H.F., Chao, T.N. and Chang, R.R. (1996), "Predictions of deflection and first-ply failure load of thin laminated composite plates via the finite element approach", Int. J. Solid. Struct., 33, 375-398. https://doi.org/10.1016/0020-7683(95)00042-9.
- Kumar, A. (2018), "Ultimate strength analysis of laminated composite sandwich plates structures", Struct., 14, 95-110. https://doi.org/10.1016/j.istruc.2018.02.004.
- Kumar, A. and Chakrabarti, A. (2019), "Failure mode analysis of laminated composite sandwich plate", Eng. Fail. Anal., 104, 950-976. https://doi.org/10.1016/j.engfailanal.2019.06.080.
- Kumar, A., Panda, S.K. and Kumar, R. (2015), "Buckling behaviour of laminated composite skew plates with various boundary conditions subjected to linearly varying in-plane edge loading", Int. J Mech. Sci., 100, 136-144. https://doi.org/10.1016/j.ijmecsci.2015.06.018.
- Kumar, D. and Singh, S.B. (2013), "Effects of flexural boundary conditions on failure and stability of composite laminate with cutouts under combined in-plane loads", Compos. Part B, 45, 657-665. https://doi.org/10.1016/j.compositesb.2012.08.016.
- Lee, C.S., Kim, J.H., Kim, S.K., Ryu, D.M. and Lee, J.M. (2015), "Initial and progressive failure analyses for composite laminates using Puck failure criterion and damage-coupled finite element method", Compos. Struct., 121, 406-419. https://doi.org/10.1016/j.compstruct.2014.11.011.
- Mukhopadhyay, M. and Hamid, S.A. (2009), Matrix and Finite Element Analyses of Structures, ANE Books Publishers.
- Mula, S.N., Leite, A.M.S. and Loja, M.A.R. (2022), "Analytical and numerical study of failure in composite", Compos. Mater. Eng., 4(1), 23-41. https://doi.org/10.12989/cme.2022.4.1.023.
- Naghsh, A. and Azhari, M. (2015), "Non-linear free vibration analysis of point supported laminated composite skew plates", Int. J. Nonlin. Mech., 76, 64-76. https://doi.org/10.1016/j.ijnonlinmec.2015.05.008.
- Nanda, N. and Bandyopadhyay, J.N. (2007), "Nonlinear free vibration analysis of laminated composite cylindrical shells with cutouts", J. Reinf. Plast. Compos., 26(14), 1413-1427. https://doi.org/10.1177/0731684407079776.
- Naserian-Nik, A.M. and Tahani, M. (2010), "Free vibration analysis of moderately thick rectangular laminated composite plates with arbitrary boundary conditions", Struct. Eng. Mech., 35(2), 217-240. https://doi.org/10.12989/sem.2010.35.2.217.
- Noh, M.H. and Lee, S.Y. (2014), "Dynamic instability of delaminated composite skew plates subjected to combined static and dynamic loads based on HSDT", Compos. Part B, 58, 113-121. https://doi.org/10.1016/j.compositesb.2013.10.073.
- Pal, P. and Bhar, A. (2013), "The displacement perspective during ultimate failure of composite laminates", Appl. Compos. Mater., 20, 171-183. https://doi.org/10.1007/s10443-012-9262-y.
- Prusty, B.G. (2005), "Progressive failure analysis of laminated unstiffened and stiffened composite panels", J. Reinf. Plast. Compos., 24(6), 633-642. https://doi.org/10.1177/0731684405045023.
- Riccio, A., Di Costanzo, C., Di Gennaro, P. and Sellitto, A. (2017), "Intra-laminar progressive failure analysis of composite laminates with a large notch damage", Eng. Fail. Anal., 73, 97-112. https://doi.org/10.1016/j.engfailanal.2016.12.012.
- Singha, M.K. and Daripa, R. (2007), "Nonlinear vibration of symmetrically laminated composite skew plates by finite element method", Int. J. Nonlin. Mech., 42, 1144-1152. https://doi.org/10.1016/j.ijnonlinmec.2007.08.001.
- Sitohang, R.D.R., Grouve, W.J.B., Warnet, L.L., Wijskamp, S. and Akkerman, R. (2022), "The relation between in-plane fiber waviness severity and first ply failure in thermoplastic composite laminates", Compos. Struct., 289, 115374. https://doi.org/10.1016/j.compstruct.2022.115374.
- Soriano, A. and Diaz, J. (2018), "Failure analysis of variable stiffness composite plates using continuum damage mechanics models", Compos. Struct., 184, 1071-1080. https://doi.org/10.1016/j.compstruct.2017.10.065.
- Upadhyay, A.K. and Shukla, K.K. (2013a), "Non-linear static and dynamic analysis of skew sandwich plates", Compos. Struct., 105, 141-148. https://doi.org/10.1016/j.compstruct.2013.05.007.
- Upadhyay, A.K. and Shukla, K.K. (2013b), "Geometrically nonlinear static and dynamic analysis of functionally graded skew plates", Commun. Nonlin. Sci. Numer. Simul., 18, 2252-2279. https://doi.org/10.1016/j.cnsns.2012.12.034.
- Upadhyay, A.K. and Shukla, K.K. (2013c), "Post-buckling behavior of composite and sandwich skew plates", Int. J. Nonlin. Mech., 55, 120-127. https://doi.org/10.1016/j.ijnonlinmec.2013.05.010.
- Vosougi, A.R., Malekzadeh, P., Topal, U. and Dede, T. (2018), "A hybrid DQ-TLBO technique for maximizing first frequency of laminated composite skew plates", Steel Compos. Struct., 28(4), 509-516. https://doi.org/10.12989/scs.2018.28.4.509.
- Zhang, Q., Quan, X.W., Yu, L.Y. and Jiang, B.S (2018), "Analytical strain-softening solutions of a spherical cavity", Lat. Am. J. Solid. Struct., 15(4), 1-25. https://doi.org/10.1590/1679-78254984.