DOI QR코드

DOI QR Code

Application of FEM in nonlinear progressive failure of composite skew plates with practical non-uniform edge conditions

  • Dona Chatterjee (Department of Civil Engineering, Heritage Institute of Technology) ;
  • Arghya Ghosh (Department of Civil Engineering, Netaji Subhas University of Technology) ;
  • Dipankar Chakravorty (Department of Civil Engineering, Jadavpur University)
  • Received : 2023.09.05
  • Accepted : 2024.04.17
  • Published : 2024.05.10

Abstract

Composite skew plates are aesthetically appealing light weight structural units finding wide applications in floors and roofs of commercial buildings. Although bending and vibration characteristics of these units have received attention from researchers but the domain of first and progressive failure has not been explored. Confident use of these plates necessitates comprehensive understanding of their failure behavior. With this objective, the present paper uses an eight noded isoparametric finite element together with von-Kármán's approach of nonlinear strains to study first ply and progressive failure up to ultimate damage of skew plates being subjected to uniform surface pressure. Parameters like skew angles, laminations and boundary conditions are varied and the results are practically analyzed. The novelty of the paper lies in the fact that the stiffness matrix of the damaged plate is calculated by considering material degradation locally only at failed points at each stage of first and progressive failure and as a result, the present outputs are so close to experimental findings. Interpretation of results from practical angles and proposing the relative performances of the different plate combinations in terms of ranks will be of much help to practicing engineers in selecting the best suited plate option among many combinations.

Keywords

References

  1. Ahmed, A. and Sluys, L.J. (2013), "A three-dimensional progressive failure model for laminated composite plates subjected to transverse loading", Eng. Fract. Mech., 114, 69-91. https://doi.org/10.1016/j.engfracmech.2013.10.004. 
  2. Bakshi, K. and Chakravorty, D. (2014), "Geometrically linear and nonlinear first-ply failure loads of composite cylindrical shells", J. Eng. Mech., 140(12), 1-10. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000808. 
  3. Belkacem, A., Tahar, H.D., Abderrezak, R. Amine, B.M., Mohamed, Z. and Boussad, A. (2018), "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., 65(6), 761-769. https://doi.org/10.12989/sem.2018.66.6.761. 
  4. Biswas, D. and Ray, C. (2019), "Effect of hybridisation in laminated composites on the first ply failure behaviour: Experimental and numerical studies", Int. J. Mech. Sci., 161, 105057. https://doi.org/10.1016/j.ijmecsci.2019.105057. 
  5. Chatterjee, D., Ghosh, A. and Chakravorty, D. (2021a), "First ply failure behaviour of laminated composite skew plates of various edge conditions", Mech. Compos. Mater., 57(5), 699-716. https://doi.org/10.1007/s11029-021-09989-4. 
  6. Chatterjee, D., Ghosh, A. and Chakravorty, D. (2021b), "Nonlinear first ply failure study of laminated composite skew plates", Mater. Today Proc., 45, 4925-4930. https://doi.org/10.1016/j.matpr.2021.01.370. 
  7. Chatterjee, D., Ghosh, A. and Chakravorty, D. (2021c), "Finite element prediction of first-ply failure loads of composite thin skewed hypar shells using nonlinear strains", Thin Wall. Struct., 167, 108159. https://doi.org/10.1016/j.tws.2021.108159. 
  8. Chen, J.F., Morozov, E.V. and Shankar, K. (2014), "Simulating progressive failure of composite laminates including in-ply and delamination damage effects", Compos. Part A, 61, 185-200. https://doi.org/10.1016/j.compositesa.2014.02.013. 
  9. Dong, H. and Wang, J. (2015), "Simulating progressive failure of composite laminates including in-ply and delamination damage effects", Compos. Struct., 128, 234-240. https://doi.org/10.1016/j.compstruct.2015.03.005. 
  10. Ellul, B., Camilleri, D. and Betts, J.C. (2014), "A progressive failure analysis applied to fibre-reinforced composite plates subject to out of plane bending", Mech. Compos. Mater., 49(6), 605-620. https://doi.org/10.1007/s11029-013-9377-8. 
  11. Falkowicz, K. (2023), "Experimental and numerical failure analysis of thin-walled composite plates using progressive failure analysis", Compos. Struct., 305, 116474. https://doi.org/10.1016/j.compstruct.2022.116474. 
  12. Gadade, A.M., Lal, A. and Singh, B.N. (2016), "Finite element implementation of Puck's failure criterion for failure analysis of laminated plate subjected to biaxial loadings", Aerosp. Sci. Technol., 55, 227-241. https://doi.org/10.1016/j.ast.2016.05.001. 
  13. Ghannadpour, S.A.M. and Abdollahzadeh, N. (2020), "Progressive failure analysis of thick imperfect composite plates using nonlinear plate theory", Int. J. Nonlin. Mech., 121, 103292. https://doi.org/10.1016/j.ijnonlinmec.2019.103292. 
  14. Ghannadpour, S.A.M. and Shakeri, M. (2020), "Application of new energy-based collocation method for nonlinear progressive damage analysis of imperfect composite plates", Thin Wall. Struct., 147, 106369. https://doi.org/10.1016/j.tws.2019.106369. 
  15. Ghannadpour, S.A.M. and Kurkaani, A. (2019), "Combined effects of end-shortening strain, lateral pressure load and initial imperfection on ultimate strength of laminates: Nonlinear plate theory", Steel Compos. Struct., 33(2), 245-259. https://doi.org/10.12989/scs.2019.33.2.245. 
  16. Ghannadpour, S.A.M., Barvaj, A.K. and Ovesy, H.R. (2021), "Predicting the nonlinear damage response of imperfect laminates using linear material degradation model and a semi-analytical technique", Int. J. Struct. Stab. Dyn., 21(10), 2150141. https://doi.org/10.1142/S0219455421501418. 
  17. Ghannadpour, S.A.M., Shakeri, M. and Barvaj, A.K. (2018), "Ultimate strength estimation of composite plates under combined in-plane and lateral pressure loads using two different numerical methods", Steel Compos. Struct., 29(6), 785-802. https://doi.org/10.12989/scs.2018.29.6.785 
  18. Ghosh, A. and Chakravorty, D. (2014), "Prediction of progressive failure behaviour of composite skewed hypar shells using finite element method", J. Struct., 2014, Article ID 147578. https://doi.org/10.1155/2014/147578. 
  19. Ghosh, A. and Chakravorty, D. (2019), "Application of FEM on first ply failure of composite hypar shells with various edge conditions", Steel Compos. Struct., 32(4), 423-441. https://doi.org/10.12989/scs.2019.32.4.423. 
  20. Ghosh, A. and Chakravorty, D. (2020), "FEM analysis of progressive failure for composite hypar shells", Strength Mater., 52, 507-520. https://doi.org/10.1007/s11223-020-00202-w. 
  21. Houmat, A. (2015), "Nonlinear free vibration analysis of variable stiffness symmetric skew laminates", Eur. J Mech. A/Solid., 50, 70-75. https://doi.org/10.1016/j.euromechsol.2014.10.008. 
  22. Joshi, R., Pal, P. and Duggal, S.K. (2020), "Ply-by-ply failure analysis of laminates using finite element method", Eur. J. Mech. A/Solid., 81, 103964. https://doi.org/10.1016/j.euromechsol.2020.103964. 
  23. Kam, T.Y., Sher, H.F., Chao, T.N. and Chang, R.R. (1996), "Predictions of deflection and first-ply failure load of thin laminated composite plates via the finite element approach", Int. J. Solid. Struct., 33, 375-398. https://doi.org/10.1016/0020-7683(95)00042-9. 
  24. Kumar, A. (2018), "Ultimate strength analysis of laminated composite sandwich plates structures", Struct., 14, 95-110. https://doi.org/10.1016/j.istruc.2018.02.004. 
  25. Kumar, A. and Chakrabarti, A. (2019), "Failure mode analysis of laminated composite sandwich plate", Eng. Fail. Anal., 104, 950-976. https://doi.org/10.1016/j.engfailanal.2019.06.080. 
  26. Kumar, A., Panda, S.K. and Kumar, R. (2015), "Buckling behaviour of laminated composite skew plates with various boundary conditions subjected to linearly varying in-plane edge loading", Int. J Mech. Sci., 100, 136-144. https://doi.org/10.1016/j.ijmecsci.2015.06.018. 
  27. Kumar, D. and Singh, S.B. (2013), "Effects of flexural boundary conditions on failure and stability of composite laminate with cutouts under combined in-plane loads", Compos. Part B, 45, 657-665. https://doi.org/10.1016/j.compositesb.2012.08.016. 
  28. Lee, C.S., Kim, J.H., Kim, S.K., Ryu, D.M. and Lee, J.M. (2015), "Initial and progressive failure analyses for composite laminates using Puck failure criterion and damage-coupled finite element method", Compos. Struct., 121, 406-419. https://doi.org/10.1016/j.compstruct.2014.11.011. 
  29. Mukhopadhyay, M. and Hamid, S.A. (2009), Matrix and Finite Element Analyses of Structures, ANE Books Publishers.
  30. Mula, S.N., Leite, A.M.S. and Loja, M.A.R. (2022), "Analytical and numerical study of failure in composite", Compos. Mater. Eng., 4(1), 23-41. https://doi.org/10.12989/cme.2022.4.1.023. 
  31. Naghsh, A. and Azhari, M. (2015), "Non-linear free vibration analysis of point supported laminated composite skew plates", Int. J. Nonlin. Mech., 76, 64-76. https://doi.org/10.1016/j.ijnonlinmec.2015.05.008. 
  32. Nanda, N. and Bandyopadhyay, J.N. (2007), "Nonlinear free vibration analysis of laminated composite cylindrical shells with cutouts", J. Reinf. Plast. Compos., 26(14), 1413-1427. https://doi.org/10.1177/0731684407079776. 
  33. Naserian-Nik, A.M. and Tahani, M. (2010), "Free vibration analysis of moderately thick rectangular laminated composite plates with arbitrary boundary conditions", Struct. Eng. Mech., 35(2), 217-240. https://doi.org/10.12989/sem.2010.35.2.217. 
  34. Noh, M.H. and Lee, S.Y. (2014), "Dynamic instability of delaminated composite skew plates subjected to combined static and dynamic loads based on HSDT", Compos. Part B, 58, 113-121. https://doi.org/10.1016/j.compositesb.2013.10.073. 
  35. Pal, P. and Bhar, A. (2013), "The displacement perspective during ultimate failure of composite laminates", Appl. Compos. Mater., 20, 171-183. https://doi.org/10.1007/s10443-012-9262-y. 
  36. Prusty, B.G. (2005), "Progressive failure analysis of laminated unstiffened and stiffened composite panels", J. Reinf. Plast. Compos., 24(6), 633-642. https://doi.org/10.1177/0731684405045023. 
  37. Riccio, A., Di Costanzo, C., Di Gennaro, P. and Sellitto, A. (2017), "Intra-laminar progressive failure analysis of composite laminates with a large notch damage", Eng. Fail. Anal., 73, 97-112. https://doi.org/10.1016/j.engfailanal.2016.12.012. 
  38. Singha, M.K. and Daripa, R. (2007), "Nonlinear vibration of symmetrically laminated composite skew plates by finite element method", Int. J. Nonlin. Mech., 42, 1144-1152. https://doi.org/10.1016/j.ijnonlinmec.2007.08.001. 
  39. Sitohang, R.D.R., Grouve, W.J.B., Warnet, L.L., Wijskamp, S. and Akkerman, R. (2022), "The relation between in-plane fiber waviness severity and first ply failure in thermoplastic composite laminates", Compos. Struct., 289, 115374. https://doi.org/10.1016/j.compstruct.2022.115374. 
  40. Soriano, A. and Diaz, J. (2018), "Failure analysis of variable stiffness composite plates using continuum damage mechanics models", Compos. Struct., 184, 1071-1080. https://doi.org/10.1016/j.compstruct.2017.10.065. 
  41. Upadhyay, A.K. and Shukla, K.K. (2013a), "Non-linear static and dynamic analysis of skew sandwich plates", Compos. Struct., 105, 141-148. https://doi.org/10.1016/j.compstruct.2013.05.007. 
  42. Upadhyay, A.K. and Shukla, K.K. (2013b), "Geometrically nonlinear static and dynamic analysis of functionally graded skew plates", Commun. Nonlin. Sci. Numer. Simul., 18, 2252-2279. https://doi.org/10.1016/j.cnsns.2012.12.034. 
  43. Upadhyay, A.K. and Shukla, K.K. (2013c), "Post-buckling behavior of composite and sandwich skew plates", Int. J. Nonlin. Mech., 55, 120-127. https://doi.org/10.1016/j.ijnonlinmec.2013.05.010. 
  44. Vosougi, A.R., Malekzadeh, P., Topal, U. and Dede, T. (2018), "A hybrid DQ-TLBO technique for maximizing first frequency of laminated composite skew plates", Steel Compos. Struct., 28(4), 509-516. https://doi.org/10.12989/scs.2018.28.4.509. 
  45. Zhang, Q., Quan, X.W., Yu, L.Y. and Jiang, B.S (2018), "Analytical strain-softening solutions of a spherical cavity", Lat. Am. J. Solid. Struct., 15(4), 1-25. https://doi.org/10.1590/1679-78254984.