DOI QR코드

DOI QR Code

Critical buckling coefficient for simply supported tapered steel web plates

  • Saad A. Yehia (Department of Civil Engineering, Higher Institute of Engineering and Technology) ;
  • Bassam Tayeh (Civil Engineering Department, Faculty of Engineering, Islamic University of Gaza) ;
  • Ramy I. Shahin (Department of Civil Engineering, Higher Institute of Engineering and Technology)
  • 투고 : 2023.01.23
  • 심사 : 2024.04.11
  • 발행 : 2024.05.10

초록

Tapered girders emerged as an economical remedy for the challenges associated with constructing long-span buildings. From an economic standpoint, these systems offer significant advantages, such as wide spans, quick assembly, and convenient access to utilities between the beam's shallow sections and the ceiling below. Elastic-local buckling is among the various failure modes that structural designers must account for during the design process. Despite decades of study, there remains a demand for efficient and comprehensive procedures to streamline product design. One of the most pressing requirements is a better understanding of the tapered web plate girder's local buckling behavior. This paper conducts a comprehensive numerical analysis to estimate the critical buckling coefficient for simply supported tapered steel web plates, considering loading conditions involving compression and bending stresses. An eigenvalue analysis was carried out to determine the natural frequencies and corresponding mode shapes of tapered web plates with varying geometric parameters. Additionally, the study highlights the relative significance of various parameters affecting the local buckling phenomenon, including the tapering ratio of the panel, normalized plate length, and ratio of minimum to maximum compressive stresses. The regression analysis and optimization techniques were performed using MATLAB software for the results of the finite element models to propose a separate formula for each load case and a unified formula covering different compression and bending cases of the elastic local buckling coefficient. The results indicate that the proposed formulas are applicable for estimating the critical buckling coefficient for simply supported tapered steel web plates.

키워드

참고문헌

  1. Abu-Hamd, M. and el Dib, F.F. (2016), "Buckling strength of tapered bridge girders under combined shear and bending", HBRC J., 12(2), 163-174. https://doi.org/10.1016/j.hbrcj.2014.11.001.
  2. AISC 360-16 (2016), Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL, USA.
  3. American Association of State Highway and Transportation Officials (2010), AASHTO LRFD Bridge Design Specifications, American Association of State Highway and Transportation Officials, Washington, DC, USA.
  4. ANSYS Inc. (2019), Theory Reference, ANSYS Release 19, ANSYS Inc., Southpointe, Canonsburg PA 15317, USA.
  5. ANSYS Inc. (2020), https://www.ansys.com.
  6. Ashok, S. and Pitchaimani, J. (2018), "Buckling behavior of nonuniformly heated tapered laminated composite plates with ply drop-off", Int. J. Struct. Stab. Dyn., 18(4), 1850059. https://doi.org/10.1142/S0219455418500591.
  7. Bedair, O.K. (1996), "Buckling behaviour of plates partially restrained against rotation under stress gradient", Struct. Eng. Mech., 4(4), 383-396. http://doi.org/10.12989/sem.1996.4.4.383.
  8. Bedair, O.K. (1997), "Effect of lateral restraint on the buckling behaviour of plates under non-uniform edge compression", Struct. Eng. Mech., 5(1), 85-104. http://doi.org/10.12989/sem.1997.5.1.085.
  9. Bourada, M., Bouadi, A., Bousahla, A.A., Senouci, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Buckling behavior of rectangular plates under uniaxial and biaxial compression", Struct. Eng. Mech., 70(1), 113. http://doi.org/10.12989/sem.2019.70.4.113.
  10. Chen, N.Z. and Soares, C.G. (2006), "Buckling analysis of stiffened composite panels", III European Conference on Computational Mechanics, Springer Netherlands.
  11. Diez, R., Lopez, C., Ibanez, J.R. and Serna, M.A. (2019), "A numerical study on elastic buckling and ultimate strength of compressed trapezoidal plates", Int. J. Struct. Stab. Dyn., 20(1), 2050009. https://doi.org/10.1142/S0219455420500091.
  12. Eid, A.R. (1957), "Ausbeulen trapezformiger Platten", Doctoral Dissertation, ETH Zurich.
  13. Eurocode 1993-1-5 (2006), Eurocode 3 (EC3): Design of Steel Structures-Part 1-5, Plated Structural Elements, European Committee for Standardization, Brussels, Belgium.
  14. Gardner, L., Fieber, A. and Macorini, L. (2019), "Formulae for calculating elastic local buckling stresses of full structural cross-sections", Struct., 17, 2-20. https://doi.org/10.1016/j.istruc.2019.01.012.
  15. Huyton, P. and York, C.B. (2001), "Buckling of skew plate, a with continuity or rotational edge restraint", J. Aerosp. Eng., 14(3), 92-101. https://doi.org/10.1061/(ASCE)0893-1321(2001)14:3(92).
  16. Ibrahim, M.M., El Aghoury, I.M. and Ibrahim, S.A.B. (2020), "Finite element investigation on plate buckling coefficients of tapered steel members web plates", Struct., 28, 2321-2334. https://doi.org/10.1016/j.istruc.2020.10.003.
  17. Ibrahim, M.M., el Aghoury, I.M. and Ibrahim, S.A.B. (2021), "Experimental and numerical investigation of axial compressive strength of unstiffened slender tapered-webs", J. Constr. Steel Res., 187, 106921. https://doi.org/10.1016/j.jcsr.2021.106921.
  18. Jiang, G., Li, F. and Zhang, C. (2018), "Post buckling and nonlinear vibration of composite laminated trapezoidal plates", Steel Compos. Struct., 26(1), 17-29. http://doi.org/10.12989/scs.2018.26.1.017.
  19. Jing, Z., Sun, Q., Liang, K. and Chen, J. (2019), "Closed-form critical buckling load of simply supported orthotropic plates and verification", Int. J. Struct. Stab. Dyn., 19(12), 1950157. https://doi.org/10.1142/S0219455411950157.9501578.
  20. Kaehler, R.C., White, D.W. and Kim, Y.D. (2011), 25 Steel Design Guide Frame Design Using Web-Tapered Members, American Institute of Steel Construction, USA.
  21. Kucukler, M. and Gardner, L. (2018), "Design of laterally restrained web-tapered steel structures through a stiffness reduction method", J. Constr. Steel Res., 141, 63-76. https://doi.org/10.1016/j.jcsr.2017.11.014.
  22. Kumar, A., Singha, M.K. and Tiwari, V. (2019), "Stability analysis of shear deformable trapezoidal composite plates", Int. J. Struct. Stab. Dyn., 19(8). 1971004. https://doi.org/10.1142/S0219455419710044.
  23. Mirambell, E. and Zarate, A.V. (2000), "Web buckling of tapered plate girders", Proc. Inst. Civil Eng.: Struct. Build., 140(1), 51-60. https://doi.org/10.1680/STBU.2000.140.1.51.
  24. Pekoz, T. (1986), "Development of a unified approach to the design of cold-formed steel members", AISI-Specifications for the Design of Cold-Formed Steel Structural Members, 61.
  25. Pope, G. (1962), "The buckling of plates tapered in planform", https://naca.central.cranfield.ac.uk/handle/1826.2/3904. 
  26. Prawel, S.P., Morrell, M.L. and Lee. G.C. (1974), "Bending and buckling strength of tapered structural members", Welding Research Supplement, 75-84.
  27. Saadatpour, M.M., Azhari, M. and Bradford, M.A. (1998), "Buckling of arbitrary quadrilateral plates with intermediate supports using the Galerkin method", Comput. Meth. Appl. Mech. Eng., 164(3-4), 297-306. https://doi.org/10.1016/S0045-7825(98)00030-9.
  28. Saadatpour, M.M., Azhari, M. and Bradford, M.A. (2002), "Analysis of general quadrilateral orthotropic thick plates with arbitrary boundary conditions by the Rayleigh-Ritz method", Int. J. Numer. Meth. Eng., 54(7), 1087-1102. https://doi.org/10.1002/NME.485.
  29. Sapalas, V. (2010), "Local stability of web of tapered beam subjected to pure bending", J. Civil Eng. Manage., 16(2), 216-221. https://doi.org/10.3846/JCEM.2009.24.
  30. Shaeer, Z.A.S.A., Shahin, R.I., El-Baghdady, G.I. and Yehia, S.A. (2024), "Numerical and analytical solution for nonlinear free vibration of tapered beams", Mansoura Eng. J., 49(3), 6. https://doi.org/10.58491/2735-4202.3179.
  31. Shahin, R.I., Ahmed, M. and Yehia, S.A. (2023), "Elastic buckling of prismatic web plate under shear with simply supported boundary conditions", Build., 13(11), 2879. https://doi.org/10.3390/buildings131128799.
  32. Shahin, R.I., Ahmed, M., Yehia, S.A. and Liang, Q.Q. (2023), "ANN model for predicting the elastic critical buckling coefficients of prismatic tapered steel web plates under stress gradients", Eng. Struct., 294, 116794. https://doi.org/10.1016/j.engstruct.2023.116794.
  33. Studer, R.P., Binion, C.D. and Davis, D.B. (2015), "Shear strength of tapered I-shaped steel members", J. Constr. Steel Res., 112, 167-174. https://doi.org/10.1016/j.jcsr.2015.04.013.
  34. Timoshenko, S. and Gere, J. (1962), Theory of Elastic Stability, Dover Publications Inc., Mineola, New York.
  35. Wang, C.M., Liew, K.M. and Alwis, W.A.M. (1992), "Buckling of skew plates and corner condition for simply supported edges", J. Eng. Mech., 118(4), 651-662. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:4(651).
  36. Yehia, S.A. and Shahin, R.I. (2023), "Critical buckling coefficient of tapered web plate girder under compression and bending stresses", Mansoura Eng. J., 48(6), 7. https://doi.org/10.58491/2735-4202.3088.
  37. York, C.B. and Williams, F.W. (1995), "Buckling analysis of skew plate assemblies: Classical plate theory results incorporating Lagrangian multipliers", Comput. Struct., 56(4), 625-635. https://doi.org/10.1016/0045-7949(94)00568-N.
  38. Ziemian, R.D. (2010), Guide to Stability Design Criteria for Metal Structures, John Wiley & Sons, Inc., Hoboken, NJ, USA.