DOI QR코드

DOI QR Code

Structural RC computer aided intelligent analysis and computational performance via experimental investigations

  • Y.C. Huang (Information Technology Faculty, Duy Tan University) ;
  • M.D. TuMuli Lulios (Princess Margaret Hospital) ;
  • Chu-Ho Chang (College of Electrical Engineering and Computer Science, National Kaohsiung University of Science and Technology) ;
  • M. Nasir Noor (College of Maritime, National Kaohsiung University of Science and Technology) ;
  • Jen-Chung Shao (College of Electrical Engineering and Computer Science, National Kaohsiung University of Science and Technology) ;
  • Chien-Liang Chiu (Department of Electronic Engineering, National Kaohsiung University of Science and Technology) ;
  • Tsair-Fwu Lee (Department of Electronic Engineering, National Kaohsiung University of Science and Technology) ;
  • Renata Wang (Information and Research Center of China)
  • 투고 : 2023.03.20
  • 심사 : 2024.04.09
  • 발행 : 2024.05.10

초록

This research explores a new finite element model for the free vibration analysis of bi-directional functionally graded (BDFG) beams. The model is based on an efficient higher-order shear deformation beam theory that incorporates a trigonometric warping function for both transverse shear deformation and stress to guarantee traction-free boundary conditions without the necessity of shear correction factors. The proposed two-node beam element has three degrees of freedom per node, and the inter-element continuity is retained using both C1 and C0 continuities for kinematics variables. In addition, the mechanical properties of the (BDFG) beam vary gradually and smoothly in both the in-plane and out-of-plane beam's directions according to an exponential power-law distribution. The highly elevated performance of the developed model is shown by comparing it to conceptual frameworks and solution procedures. Detailed numerical investigations are also conducted to examine the impact of boundary conditions, the bi-directional gradient indices, and the slenderness ratio on the free vibration response of BDFG beams. The suggested finite element beam model is an excellent potential tool for the design and the mechanical behavior estimation of BDFG structures.

키워드

참고문헌

  1. Bai, X., He, Y. and Xu, M. (2021), "Low-thrust reconfiguration strategy and optimization for formation flying using Jordan normal form", IEEE Trans. Aerosp. Electr. Syst., 57(5), 3279-3295. https://doi.org/10.1109/TAES.2021.3074204.
  2. Bai, X., Xu, M., Li, Q. and Yu, L. (2022), "Trajectory-battery integrated design and its application to orbital maneuvers with electric pump-fed engines", Adv. Space Res., 70(3), 825-841. https://doi.org/10.1016/j.asr.2022.05.014.
  3. Bo, C., Jiangping, H. and Bijoy, G. (2023), "Finite-time observer based tracking control of heterogeneous multi-AUV systems with partial measurements and intermittent communication", Sci. China Inf. Sci., https://doi.org/10.1007/s11432-023-3903-6.
  4. Cao, B., Li, Z., Liu, X., Lv, Z. and He, H. (2023). "Mobility-aware multiobjective task offloading for vehicular edge computing in digital twin environment", IEEE J. Select. Area. Commun., 41(10), 3046-3055. https://doi.org/10.1109/JSAC.2023.3310100.
  5. Chen, B., Hu, J., Zhao, Y. and Ghosh, B.K. (2022), "Finite-time observer based tracking control of uncertain heterogeneous underwater vehicles using adaptive sliding mode approach", Neurocomput., 481, 322-332. https://doi.org/10.1016/j.neucom.2022.01.038.
  6. Chen, F., Zhang, H., Li, Z., Luo, Y., Xiao, X. and Liu, Y. (2023), "Residual stresses effects on fatigue crack growth behavior of rib-to-deck double-sided welded joints in orthotropic steel decks", Adv. Struct. Eng., 27(1), 35-50. https://doi.org/10.1177/13694332231213462.
  7. Chen, J., Wang, Q., Cheng, H.H., Peng, W. and Xu, W. (2022), "A review of vision-based traffic semantic understanding in ITSs", IEEE Trans. Intel. Transp. Syst., 23(11), 19954-19979. https://doi.org/10.1109/TITS.2022.3182410.
  8. Chen, J., Wang, Q., Peng, W., Xu, H., Li, X. and Xu, W. (2022), "Disparity-based multiscale fusion network for transportation detection", IEEE Trans. Intel. Transp. Syst., 23(10), 18855-18863. https://doi.org/10.1109/TITS.2022.3161977.
  9. Chen, J., Xu, M., Xu, W., Li, D., Peng, W. and Xu, H. (2023), "A flow feedback traffic prediction based on visual quantified features", IEEE Trans. Intel. Transp. Syst., 24(9), 10067-10075. https://doi.org/10.1109/TITS.2023.3269794.
  10. Chen, T., Meng, Y., Wang, R. and Chen, Z.Y. (2024), "A novel aerodynamic vibration and fuzzy numerical analysis", Wind Struct., 38(3), 161. https://doi.org/10.12989/was.2024.38.3.161.
  11. Chen, T., Wang, R., Meng, Y. and Chen, Z.Y. (2024), "A new viewpoint on stability theorem for engineering structural and geotechnical parameter", Geomech. Eng., 36(5), 475-487. https://doi.org/10.12989/gae.2024.36.5.475.
  12. Chen, Y., Zhu, L., Hu, Z., Chen, S. and Zheng, X. (2022), "Risk propagation in multilayer heterogeneous network of coupled system of large engineering project", J. Manage. Eng., 38(3), 4022003. https://doi.org/10.1061/(ASCE)ME.1943-5479.0001022.
  13. Chen, Z. (2023), "A novel recurrent self-evolving fuzzy neural network for consensus decision-making of unmanned aerial vehicles", Int. J. Adv. Robot. Syst., 21(2) 1-14. https://doi.org/10.1177/17298806231190960.
  14. Chen, Z., Meng, Y., Wang, R.Y. and Chen, T. (2024), "Apply evolved grey-prediction scheme to structural building dynamic analysis", Struct. Eng. Mech., 90(1), 19. https://doi.org/10.12989/sem.2024.90.1.019.
  15. Chen, Z., Meng, Y., Wang, R.Y. and Chen, T. (2024), "Neural ordinary differential grey algorithm to forecasting MEVW systems", Int. J. Comput. Commun. Control, 19(1), 1. https://doi.org/10.15837/ijccc.2024.1.4676.
  16. Chen, Z.Y., Huang, L., Wu, H., Meng, Y., Xiang, S. and Chen, T. (2021), "Grey signal predictor and evolved control for practical nonlinear mechanical systems", J. Grey Syst., 33(1), 156-170.
  17. Chen, Z.Y., Jiang, R., Wang, R.Y. and Chen, T. (2021), "Active TMD systematic design of fuzzy control and the application in high-rise buildings", Earthq. Struct., 21(6), 577-585. https://doi.org/10.12989/eas.2021.21.6.577.
  18. Chen, Z.Y., Jiang, R., Wang, R.Y. and Chen, T. (2021), "Apply a robust fuzzy LMI control scheme with AI algorithm to civil frame building dynamic analysis", Comput. Concrete, 28(4), 433-440. https://doi.org/10.12989/cac.2021.28.4.433.
  19. Chen, Z.Y., Jiang, R., Wang, R.Y. and Chen, T. (2022), "LQG modeling and GA control of structures subjected to earthquakes", Earthq. Struct., 22(4), 421. https://doi.org/10.12989/eas.2022.22.4.421.
  20. Chen, Z.Y., Meng, Y. and Chen, T. (2022), "NN model-based evolved control by DGM model for practical nonlinear systems", Exp. Syst. Appl., 193, 115873. https://doi.org/10.1016/j.eswa.2021.115873.
  21. Chen, Z.Y., Meng, Y., Wang, R.Y. and Chen, T. (2022), "A fuzzy grey predictor for civil frame building via Lyapunov criterion", Comput. Concrete, 30(5), 357. https://doi.org/10.12989/cac.2022.30.5.357.
  22. Chen, Z.Y., Meng, Y., Wang, R.Y. and Chen, T. (2022), "Bridges dynamic analysis under earthquakes using a smart algorithm", Earthq. Struct., 23(4), 329. https://doi.org/10.12989/eas.2022.23.4.329.
  23. Chen, Z.Y., Meng, Y., Wang, R.Y. and Chen, T. (2022), "Fuzzy neural network controller of interconnected method for civil structures", Adv. Concrete Constr., 13(5), 385-394. https://doi.org/10.12989/acc.2022.13.5.385.
  24. Chen, Z.Y., Meng, Y., Wang, R.Y. and Chen, T. (2022), "Systematic fuzzy Navier-Stokes equations for aerospace vehicles", Aircraft Eng. Aerosp. Technol., 94(3), 351-359. https://doi.org/10.1108/AEAT-06-2020-0109.
  25. Chen, Z.Y., Meng, Y., Wang, R.Y. and Chen, T. (2022), "Water quality big data analysis of the river basin with artificial intelligence ADV monitoring", Membr. Water Treat., 13(5), 219. https://doi.org/10.12989/mwt.2022.13.5.219.
  26. Chen, Z.Y., Meng, Y., Wang, R.Y. and Chen, T. (2023), "A novel robotic GWO LDI modeling and control for nonlinear systems", Int. J. Acoust. Vib., 28(2), 147-157. https://doi.org/10.20855/ijav.2023.28.21897.
  27. Chen, Z.Y., Meng, Y., Wang, R.Y. and Chen, T. (2023), "Grey FNN control and robustness design for practical nonlinear systems", J. Eng. Res., 11(1A), 1. https://doi.org/10.36909/jer.11273.
  28. Chen, Z.Y., Meng, Y., Wang, R.Y. and Chen, T. (2023), "GWO-based fuzzy modeling for nonlinear composite systems", Steel Compos. Struct., 47(4), 513. https://doi.org/10.12989/scs.2023.47.4.513.
  29. Chen, Z.Y., Meng, Y., Wang, R.Y., Peng, S.H., Yang, Y. and Chen, T. (2022), "Dynamic intelligent control of composite buildings by using M-TMD and evolutionary algorithm", Steel Compos. Struct., 42(5), 591-598. https://doi.org/10.12989/scs.2022.42.5.591.
  30. Chen, Z.Y., Meng, Y.H., Jiang, R., Wang, R.Y. and Chen, T. (2023), "Neural ordinary differential gray algorithm to forecasting models of controlled systems", Int. J. Adv. Robot. Syst., 20(4), 17298806231171244. https://doi.org/10.1177/17298806231171244.
  31. Chen, Z.Y., Meng, Y.H., Wang, R.Y. and Chen, T. (2023), "Neural based grey nonlinear control for real-world example of mechanical systems", Neur. Proc. Lett., 55(5), 5745-5761. https://doi.org/10.1007/s11063-022-11109-9.
  32. Chen, Z.Y., Peng, S.H., Meng, Y., Wang, R.Y., Fu, Q. and Chen, T. (2022), "Composite components damage tracking and dynamic structural behaviour with AI algorithm", Steel Compos. Struct., 42(2), 151-159. https://doi.org/10.12989/scs.2022.42.2.151.
  33. Chen, Z.Y., Peng, S.H., Wang, R.Y., Meng, Y., Fu, Q. and Chen, T. (2022), "Stochastic intelligent GA controller design for active TMD shear building", Struct. Eng. Mech., 81(1), 51-57. https://doi.org/10.12989/sem.2022.81.1.051.
  34. Chen, Z.Y., Wang, R.Y., Jiang, R. and Chen, T. (2022), "LDI NN auxiliary modeling and control design for nonlinear systems", Smart Struct. Syst., 29(5), 693-703. https://doi.org/10.12989/sss.2022.29.5.693.
  35. Chen, Z.Y., Wang, R.Y., Jiang, R. and Chen, T. (2022), "Neural ordinary differential gray algorithm to forecasting nonlinear systems", Adv. Eng. Softw., 173, 103199. https://doi.org/10.1016/j.advengsoft.2022.103199.
  36. Chen, Z.Y., Wang, R.Y., Jiang, R. and Chen, T. (2022), "NNDI decentralized evolved intelligent stabilization of large-scale systems", Smart Struct. Syst., 30(1), 1. https://doi.org/10.12989/sss.2022.30.1.001.
  37. Chen, Z.Y., Wang, R.Y., Jiang, R. and Chen, T. (2024), "Nonlinear intelligent control systems subjected to earthquakes by fuzzy tracking theory", Smart Struct. Syst., 33(4), 291-300. https://doi.org/10.12989/sss.2024.33.4.291.
  38. Chen, Z.Y., Wang, R.Y., Meng, Y. and Chen, T. (2022), "Intelligent algorithm and optimum design of fuzzy theory for structural control", Smart Struct. Syst., 30(5), 537. https://doi.org/10.12989/sss.2022.30.5.537.
  39. Chen, Z.Y., Wang, R.Y., Meng, Y. and Chen, T. (2023), "A novel grey TMD control for structures subjected to earthquakes", Earthq. Struct., 24(1), 1. https://doi.org/10.12989/eas.2023.24.1.001.
  40. Chen, Z.Y., Wang, R.Y., Meng, Y. and Chen, T. (2023), "A novel smart criterion of grey-prediction control for practical applications", Smart Struct. Syst., 31(1), 69-78. https://doi.org/10.12989/sss.2023.31.1.069.
  41. Chen, Z.Y., Wang, R.Y., Meng, Y. and Chen, T. (2023), "Grey algorithmic control and identification for dynamic coupling composite structures", Steel Compos. Struct., 49(4), 407. https://doi.org/10.12989/scs.2023.49.4.407.
  42. Chen, Z.Y., Wang, R.Y., Meng, Y. and Chen, T. (2023), "Modeling control and forecasting nonlinear systems based on grey signal theory", Int. J. Uncertain., Fuzz. Knowled.-Bas. Syst., 31(04), 649-668. https://doi.org/10.1142/S0218488523500307.
  43. Chen, Z.Y., Wang, R.Y., Meng, Y. and Chen, T. (2023), "Smart modified repetitive-control design for nonlinear structure with tuned mass damper", Steel Compos. Struct., 46(1), 107. https://doi.org/10.12989/scs.2023.46.1.107.
  44. Chen, Z.Y., Wang, R.Y., Meng, Y., Fu, Q. and Chen, T. (2021), "Smart structural control and analysis for earthquake excited building with evolutionary design", Struct. Eng. Mech., 79(2), 131-139. https://doi.org/10.12989/sem.2021.79.2.131.
  45. Cheng, B., Wang, M., Zhao, S., Zhai, Z., Zhu, D. and Chen, J. (2017), "Situation-aware dynamic service coordination in an IoT environmen", IEEE/ACM Trans. Network., 25(4), 2082-2095. https://doi.org/10.1109/TNET.2017.2705239.
  46. Deng, E., Wang, Y., Zong, L., Zhang, Z. and Zhang, J. (2024), "Seismic behavior of a novel liftable connection for modular steel buildings: Experimental and numerical studies", Thin Wall. Struct., 197, 111563. https://doi.org/10.1016/j.tws.2024.111563.
  47. Di, Y., Li, R., Tian, H., Guo, J., Shi, B., Wang, Z., ... & Liu, Y. (2023), "A maneuvering target tracking based on fastIMM-extended Viterbi algorithm", Neur. Comput. Appl., 1-10. https://doi.org/10.1007/s00521-023-09039-1.
  48. Fang, Z., Wang, J., Liang, J., Yan, Y., Pi, D., Zhang, H. and Yin, G. (2023), "Authority allocation strategy for shared steering control considering human-machine mutual trust level", IEEE Trans. Intel. Vehic., 9(1), 2002-2015. https://doi.org/10.1109/TIV.2023.3300152.
  49. Fu, C., Yuan, H., Xu, H., Zhang, H. and Shen, L. (2023), "TMSO-Net: Texture adaptive multi-scale observation for light field image depth estimation", J. Visual Commun. Image Represent., 90, 103731. https://doi.org/10.1016/j.jvcir.2022.103731.
  50. Fu, X. and Ren, M. (2024), "Sustainable and Low-AoI cooperative data acquisition in UAV-Aided sensor networks", IEEE Sensor. J., 24(6), 9016-9031. https://doi.org/10.1109/jsen.2024.3355161.
  51. He, H., Qiao, H., Sun, T., Yang, H. and He, C. (2024), "Research progress in mechanisms, influence factors and improvement routes of chloride binding for cement composites", J. Build. Eng., 86, 108978. https://doi.org/10.1016/j.jobe.2024.108978.
  52. He, H., Shi, J., Yu, S., Yang, J., Xu, K., He, C. and Li, X. (2024), "Exploring green and efficient zero-dimensional carbon-based inhibitors for carbon steel: from performance to mechanism", Constr. Build. Mater., 411, 134334. https://doi.org/10.1016/j.conbuildmat.2023.134334.
  53. He, H., Shuang, E., Ai, L., Wang, X., Yao, J., He, C. and Cheng, B. (2023), "Exploiting machine learning for controlled synthesis of carbon dots-based corrosion inhibitors", J. Clean. Prod., 419, 138210. https://doi.org/10.1016/j.jclepro.2023.138210.
  54. Hu, D., Li, Y., Yang, X., Liang, X., Zhang, K. and Liang, X. (2023), "Experiment and application of NATM tunnel deformation monitoring based on 3D laser scanning", Struct. Control Hlth. Monit., 2023, Article ID 3341788. https://doi.org/10.1155/2023/3341788.
  55. Huang, C., Han, Z., Li, M., Wang, X. and Zhao, W. (2021), "Sentiment evolution with interaction levels in blended learning environments: Using learning analytics and epistemic network analysis", Austr. J. Edu. Technol., 37(2), 81-95. https://doi.org/10.14742/ajet.6749.
  56. Jiang, H., Wang, M., Zhao, P., Xiao, Z. and Dustdar, S. (2021), "A utility-aware general framework with quantifiable privacy preservation for destination prediction in LBSs", IEEE/ACM Trans. Network., 29(5), 2228-2241. https://doi.org/10.1109/TNET.2021.3084251.
  57. Jiao, B., Qiao, J., Jia, S., Liu, R., Wei, X., Yun, S., ... & Cong, B. (2024), "Low stress TSV arrays for high-density interconnection", Eng., https://doi.org/10.1016/j.eng.2023.11.023.
  58. Li, J., Liu, Y. and Lin, G. (2023), "Implementation of a coupled FEM-SBFEM for soil-structure interaction analysis of largescale 3D base-isolated nuclear structures", Comput. Geotech., 162, 105669. https://doi.org/10.1016/j.compgeo.2023.105669.
  59. Li, K., Ji, L., Yang, S., Li, H. and Liao, X. (2022), "Couple-group consensus of cooperative-competitive heterogeneous multiagent systems: A fully distributed event-triggered and pinning control method", IEEE Trans. Cybernet., 52(6), 4907-4915. https://doi.org/10.1109/TCYB.2020.3024551.
  60. Li, N., Lu, Y., Li, S. and Gao, D. (2020a), "Axial compressive behaviour of steel fibre reinforced self-stressing and self-compacting concrete-filled steel tube columns", Eng. Struct., 222, 111108. https://doi.org/10.1016/j.engstruct.2020.111108.
  61. Li, P.P., Brouwers, H.J.H. and Yu, Q. (2020b), "Influence of key design parameters of ultra-high performance fibre reinforced concrete on in-service bullet resistance", Int. J. Impact Eng., 136, 103434. https://doi.org/10.1016/j.ijimpeng.2019.103434.
  62. Li, S., Chen, J., Peng, W., Shi, X. and Bu, W. (2023), "A vehicle detection method based on disparity segmentation", Multimedia Tool. Appl., 82(13), 19643-19655. https://doi.org/10.1007/s11042-023-14360-x.
  63. Liang, J., Lu, Y., Wang, F., Feng, J., Pi, D., Yin, G. and Li, Y. (2024), "ETS-Based human-machine robust shared control design considering the network delays", IEEE Trans. Auto. Sci. Eng., 1-11. https://doi.org/10.1109/TASE.2024.3383094.
  64. Liu, H., Yuan, H., Liu, Q., Hou, J., Zeng, H. and Kwong, S. (2021), "A hybrid compression framework for color attributes of static 3D point clouds", IEEE Trans. Circuit. Syst. Video Technol., 32(3), 1564-1577. https://doi.org/10.1109/TCSVT.2021.3069838.
  65. Liu, J., Wu, C., Li, J., Su, Y., Shao, R., Liu, Z. and Chen, G. (2017), "Experimental and numerical study of reactive powder concrete reinforced with steel wire mesh against projectile penetration", Int. J. Impact Eng., 109, 131-149. https://doi.org/10.1016/j.ijimpeng.2017.06.006.
  66. Liu, Q., Yuan, H., Hamzaoui, R., Su, H., Hou, J. and Yang, H. (2021), "Reduced reference perceptual quality model with application to rate control for video-based point cloud compression", IEEE Trans. Image Proc., 30, 6623-6636. https://doi.org/10.1109/TIP.2021.3096060.
  67. Lovichova, R., Mara, M. and Fornusek, J. (2017), "Projectile impact resistance of UHPFRC structures for various methods of fresh mixture placement", Procedia Eng., 193, 80-87. https://doi.org/10.1016/j.proeng.2017.06.189.
  68. Luo, R., Peng, Z., Hu, J. and Ghosh, B.K. (2023), "Adaptive optimal control of affine nonlinear systems via identifier-critic neural network approximation with relaxed PE conditions", Neur. Network., 167, 588-600. https://doi.org/10.1016/j.neunet.2023.08.044.
  69. Luo, Y., Liu, X., Chen, F., Zhang, H. and Xiao, X. (2023), "Numerical simulation on crack-inclusion interaction for rib-to-deck welded joints in orthotropic steel deck", Metal., 13(8), 1402. https://doi.org/10.3390/met13081402.
  70. Mahakavi, P. and Chithra, R. (2019), "Impact resistance, microstructures and digital image processing on self-compacting concrete with hooked end and crimped steel fiber", Constr. Build. Mater., 220, 651-666. https://doi.org/10.1016/j.conbuildmat.2019.06.001.
  71. Mohammadzadeh, A., Taghavifar, H., Zhang, C., Alattas, K.A., Liu, J. and Vu, M.T. (2024), "A non-linear fractional-order type-3 fuzzy control for enhanced path-tracking performance of autonomous cars", IET Control Theor. Appl., 18(1), 40-54. https://doi.org/10.1049/cth2.12538.
  72. Qu, J., Mao, B., Li, Z., Xu, Y., Zhou, K., Cao, X., ... & Wang, X. (2023), "Recent progress in advanced tactile sensing technologies for soft grippers", Adv. Funct. Mater., 33(41), 2306249. https://doi.org/10.1002/adfm.202306249.
  73. Ren, C., Yu, J., Liu, X., Zhang, Z. and Cai, Y. (2022), "Cyclic constitutive equations of rock with coupled damage induced by compaction and cracking", Int. J. Min. Sci. Technol., 32(5), 1153-1165. https://doi.org/10.1016/j.ijmst.2022.06.010.
  74. She, A., Wang, L., Peng, Y. and Li, J. (2023), "Structural reliability analysis based on improved wolf pack algorithm AK-SS", Struct., 57, 105289. https://doi.org/10.1016/j.istruc.2023.105289.
  75. Shi, M., Hu, W., Li, M., Zhang, J., Song, X. and Sun, W. (2023), "Ensemble regression based on polynomial regression-based decision tree and its application in the in-situ data of tunnel boring machine", Mech. Syst. Signal Pr., 188, 110022. https://doi.org/10.1016/j.ymssp.2022.110022.
  76. Shi, M., Lv, L. and Xu, L. (2023), "A multi-fidelity surrogate model based on extreme support vector regression: Fusing different fidelity data for engineering design", Eng. Comput., 40(2), 473-493. https://doi.org/10.1108/EC-10-2021-0583.
  77. Shu, Z., Ning, B., Chen, J., Li, Z., He, M., Luo, J. and Dong, H. (2023), "Reinforced moment-resisting glulam bolted connection with coupled long steel rod with screwheads for modern timber frame structures", Earthq. Eng. Struct. Dyn., 52(4), 845-864. https://doi.org/10.1002/eqe.3789.
  78. Song, F., Liu, Y., Shen, D., Li, L. and Tan, J. (2022), "Learning control for motion coordination in water scanners: Toward gain adaptation", IEEE Trans. Indus. Electr., 69(12), 13428-13438. https://doi.org/10.1109/TIE.2022.3142428.
  79. Sun, G., Xu, Z., Yu, H. and Chang, V. (2021), "dynamic network function provisioning to enable network in box for industrial applications", IEEE Trans. Indus. Inform., 17(10), 7155-7164. https://doi.org/10.1109/TII.2020.3042872.
  80. Wang, D., Wang, X., Jin, M.L., He, P. and Zhang, S. (2022), "Molecular level manipulation of charge density for solid-liquid TENG system by proton irradiation", Nano Energy, 103, 107819. https://doi.org/10.1016/j.nanoen.2022.107819.
  81. Wang, Q., Dai, W., Zhang, C., Zhu, J. and Ma, X. (2023), "A compact constraint incremental method for random weight networks and its application", IEEE Trans. Neur. Network. Learn. Syst., 1-9. https://doi.org/10.1109/TNNLS.2023.3289798.
  82. Wang, R., Gu, Q., Lu, S., Tian, J., Yin, Z., Yin, L. and Zheng, W. (2024), "FI-NPI: Exploring optimal control in parallel platform systems", Electr., 13(7), 1168. https://doi.org/10.3390/electronics13071168.
  83. Wang, X., Zhang, R., Miao, Y., Wang, S. and Zhang, Y. (2024), "$\rm"$\rm PI^{{\text {2}}} $-Based adaptive impedance control for gait adaption of lower limb exoskeleton", IEEE/ASME Trans. Mechatron., 1-11. https://doi.org/10.1109/TMECH.2024.3370954.
  84. Wang, Y., Xu, J., Qiao, L., Zhang, Y. and Bai, J. (2023), "Improved amplification factor transport transition model for transonic boundary layers", AIAA J., 61(9), 3866-3882. https://doi.org/10.2514/1.J062341.
  85. Xiao, Z., Fang, H., Jiang, H., Bai, J., Havyarimana, V., Chen, H. and Jiao, L. (2021), "Understanding private car aggregation effect via spatio-temporal analysis of trajectory data", IEEE Trans. Cybernet., 53(4), 2346-2357. https://doi.org/10.1109/TCYB.2021.3117705.
  86. Xiao, Z., Li, H., Jiang, H., Li, Y., Alazab, M., Zhu, Y. and Dustdar, S. (2023), "Predicting urban region heat via learning arrive-stay-leave behaviors of private cars", IEEE Trans. Intel. Transp. Syst., 24(10), 10843-10856. https://doi.org/10.1109/TITS.2023.3276704.
  87. Xu, J., Park, S.H., Zhang, X. and Hu, J. (2021), "The improvement of road driving safety guided by visual inattentional blindness", IEEE Trans. Intel. Transp. Syst., 23(6), 4972-4981. https://doi.org/10.1109/TITS.2020.3044927.
  88. Xuemin, Z., Ying, R., Zenggang, X., Haitao, D., Fang, X. and Yuan, L. (2023), "Resource-constrained and socially selfish-based incentive algorithm for socially aware networks", J. Signal Pr. Syst., 95(12), 1439-1453. https://doi.org/10.1007/s11265-023-01896-2.
  89. Yin, L., Wang, L., Li, J., Lu, S., Tian, J., Yin, Z., ... & Zheng, W. (2023), "YOLOV4_CSPBi: Enhanced land target detection model", Land, 12(9), 1813. https://doi.org/10.3390/land12091813.
  90. Yin, Y., Guo, Y., Su, Q. and Wang, Z. (2022), "Task allocation of multiple unmanned aerial vehicles based on deep transfer reinforcement learning", Drone., 6(8), 215. https://doi.org/10.3390/drones6080215.
  91. Yu, J., Dong, X., Li, Q., Lu, J. and Ren, Z. (2022), "Adaptive practical optimal time-varying formation tracking control for disturbed high-order multi-agent systems", IEEE Trans. Circuit. Syst. I: Regul. Paper., 69(6), 2567-2578. https://doi.org/10.1109/TCSI.2022.3151464.
  92. Yu, R., Spiesz, P. and Brouwers, H.J.H. (2016), "Energy absorption capacity of a sustainable Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) in quasi-static mode and under high velocity projectile impact", Cement Concrete Compos., 68, 109-122. https://doi.org/10.1016/j.cemconcomp.2016.02.012.
  93. Zarrin, O. and Khoshnoud, H.R. (2019), "Experimental investigation on self-compacting concrete reinforced with steel fibers", Struct. Eng. Mech., 59(1), 133-151. https://doi.org/10.12989/sem.2016.59.1.133.
  94. Zhang, H., Xiang, X., Huang, B., Wu, Z. and Chen, H. (2023), "Static homotopy response analysis of structure with random variables of arbitrary distributions by minimizing stochastic residual error", Comput. Struct., 288, 107153. https://doi.org/10.1016/j.compstruc.2023.107153.
  95. Zhang, J., Maalej, M. and Quek, S.T. (2007), "Performance of hybrid-fiber ECC blast/shelter panels subjected to drop weight impact", J. Mater. Civil Eng., 19(10), 855-863. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:10(855).
  96. Zhang, J., Zhu, D., Jian, W., Hu, W., Peng, G., Chen, Y. and Wang, Z. (2024), "Fractional order complementary non-singular terminal sliding mode control of PMSM based on neural network", Int. J. Autom. Technol., 1-12. https://doi.org/10.1007/s12239-024-00015-9.
  97. Zhang, X., Ruiz, G., Tarifa, M., Cendon, D., Galvez, F. and Alhazmi, W.H. (2017), "Dynamic fracture behavior of steel fiber reinforced self-compacting concretes (SFRSCCs)", Mater., 10(11), 1270. https://doi.org/10.3390/ma10111270.
  98. Zhang, X., Wang, S., Liu, H., Cui, J., Liu, C. and Meng, X. (2024), "Assessing the impact of inertial load on the buckling behavior of piles with large slenderness ratios in liquefiable deposits", Soil Dyn. Earthq. Eng., 176, 108322. https://doi.org/10.1016/j.soildyn.2023.108322.
  99. Zhang, Y., Zhao, K., Li, Y., Gu, J., Ye, Z. and Ma, J. (2018), "Study on the local damage of SFRC with different fraction under contact blast loading", Comput. Concrete, 22(1), 63-70. https://doi.org/10.12989/cac.2018.22.1.063.
  100. Zheng, C., An, Y., Wang, Z., Qin, X., Eynard, B., Bricogne, M., ... & Zhang, Y. (2023), "Knowledge-based engineering approach for defining robotic manufacturing system architectures", Int. J. Prod. Res., 61(5), 1436-1454. https://doi.org/10.1080/00207543.2022.2037025.
  101. Zheng, C., An, Y., Wang, Z., Wu, H., Qin, X., Eynard, B. and Zhang, Y. (2022), "Hybrid offline programming method for robotic welding systems", Robot. Comput.-Integr. Manuf., 73, 102238. https://doi.org/10.1016/j.rcim.2021.102238.
  102. Zheng, W., Deng, P., Gui, K. and Wu, X. (2023), "An Abstract Syntax Tree based static fuzzing mutation for vulnerability evolution analysis", Inform. Softw. Technol., 158, 107194. https://doi.org/10.1016/j.infsof.2023.107194.
  103. Zhou, P., Zheng, P., Qi, J., Li, C., Lee, H.Y., Duan, A., ... & Navarro-Alarcon, D. (2024), "Reactive human-robot collaborative manipulation of deformable linear objects using a new topological latent control model", Robot. Comput.-Integr. Manuf., 88, 102727. https://doi.org/10.1016/j.rcim.2024.102727.
  104. Zhu, Q., Chen, J., Gou, G., Chen, H. and Li, P. (2017). "Ameliorated longitudinal critically refracted-Attenuation velocity method for welding residual stress measurement", J. Mater. Proc. Technol., 246, 267-275. https://doi.org/10.1016/j.jmatprotec.2017.03.022.