참고문헌
- Ahmed, R.A., Moustafa, N.M., Faleh, N.M. and Fenjan, R.M. (2020), "Nonlocal nonlinear stability of higher-order porous beams via Chebyshev-Ritz method", Struct. Eng. Mech., 76(3), 413-420. https://doi.org/10.12989/sem.2020.76.3.413.
- Alimoradzadeh, M. and Akbas, S.D. (2022), "Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment", Struct. Eng. Mech., 81(6), 705-714. https://doi.org/10.12989/sem.2022.81.6.705.
- Alneamy A.M. and Ouakad H.M. (2024), "Modeling and structural analysis of MEMS shallow arch assuming multimodal initial curvature profiles", Math., 12(7), 970. https://doi.org/10.3390/math12070970.
- Alneamy, A.M. (2024), "Dynamic snap-through motion and chaotic attractor of electrostatic shallow arch micro-beams", Chaos Solit. Fractal., 182, 114777. https://doi.org/10.1016/j.chaos.2024.114777.
- Ansari, R., Oskouie, M.F. and Zargar, M. (2022), "Hygrothermally induced vibration analysis of bidirectional functionally graded porous beams", Transp. Porous. Med., 142, 41-62. https://doi.org/10.1007/s11242-021-01700-4.
- Balireddy, S.N. and Pitchaimani, J. (2022), "Stability and dynamic behaviour of bi-directional functionally graded beam subjected to variable axial load", Mater. Today Commun., 32, 104043. https://doi.org/10.1016/j.mtcomm.2022.104043.
- Belabed, Z., Selim, M.M., Slimani, O., Taibi, N., Tounsi, A. and Hussain, M. (2021), "An efficient higher order shear deformation theory for free vibration analysis of functionally graded shells", Steel Compos. Struct., 40(2), 307-321. https://doi.org/10.12989/scs.2021.40.2.307.
- Berkia, A., Benguediab, S., Menasria, A., Bouhadra, A., Mamen, F.B.B., Tounsi, A., ... & Hussain, M. (2022), "Static buckling analysis of bi-directional functionally graded sandwich (BFGSW) beams with two different boundary conditions", Steel Compos. Struct., 44(4), 489-503. https://doi.org/10.12989/scs.2022.44.4.503.
- Bouzeriba, A. and Bouzrira, C. (2024), "The analysis of pressurized FGM cylinders with arbitrarily varying material properties using strain based approach", Mech. Bas. Des. Struct. Mach., 1-19. https://doi.org/10.1080/15397734.2024.2318737.
- Charef, T., Bachir Bouiadjra, R., Sekkal, M., Bachiri, A., Benyoucef, S., Saleh, M.M.S., ... & Hussain, M. (2023), "Assessing the impact of different foundations on the thermodynamic response of bidirectional FG porous beams", Arab. J. Geosci., 16, 48. https://doi.org/10.1007/s12517-022-11138-7.
- Chen, W.R. and Chang, H. (2020), "Vibration analysis of bi-directional functionally graded Timoshenko beams using Chebyshev collocation method", Int. J. Struct. Stab. Dyn., 21(01), 2150009. https://doi.org/10.1142/S0219455421500097.
- Chen, X., Huang, S., Zhu, B., Wu, R. and Ren, Z. (2022), "A domain decomposition method based vibration analysis of BDFGs imperfect beams with arbitrary boundary conditions", Compos. Struct., 284, 115115. https://doi.org/10.1016/j.compstruct.2021.115115.
- Chen, X., Lu, Y. and Li, Y. (2019), "Free vibration, buckling and dynamic stability of bi-directional FG microbeam with a variable length scale parameter embedded in elastic medium", Appl. Math. Model., 67, 430-448. https://doi.org/10.1016/j.apm.2018.11.004.
- Chen, X., Lu, Y., Wu, Z., Shao, Y., Xue, X. and Wu, Y. (2023), "Free vibration of in-plane bi-directional functionally graded materials rectangular plates with geometric imperfections and general elastic restraints", Aerosp. Sci. Technol., 132, 108045. https://doi.org/10.1016//10.1016/j.ast.2022.108045.
- Dangi, C., Saini, S., Lal, R. and Singh, I.V. (2020), "Size dependent FEM model for Bi-directional functionally graded nano-beams", Mater. Today: Proceed., 24, 1302-1311. https://doi.org/10.1016/j.matpr.2020.04.445.
- Deng, H. and Cheng, W. (2016), "Dynamic characteristics analysis of bi-directional functionally graded Timoshenko beams", Compos. Struct., 141, 253-263. https://doi.org/10.1016/j.compstruct.2016.01.051.
- Emadi, M., Nejad, M.Z., Ziaee, S. and Hadi, A. (2021), "Buckling analysis of arbitrary two-directional functionally graded nano-plate based on nonlocal elasticity theory using generalized differential quadrature method", Steel. Compos. Struct., 39(5), 565-581. https://doi.org/10.12989/scs.2021.39.5.565.
- Gao, Y., Xiao, W.S. and Zhu, H. (2019), "Nonlinear thermal buckling of bi-directional functionally graded nanobeams", Struct. Eng. Mech., 71(6), 669-682. https://doi.org/10.12989/sem.2019.71.6.669.
- Gautam, M., Sharma, P. and Chaturvedi, M. (2023), "Modeling of FGM beam under an extended exponential law", Int. J. Interact. Des. Manuf., 1-6. https://doi.org/10.1007/s12008-023-01239-2.
- Ghatage, P.S., Kar, V.R. and Sudhagar, P.E. (2020), "On the numerical modelling and analysis of multi-directional functionally graded composite structures: A review", Compos. Struct., 236, 111837. https://doi.org/10.1016/j.compstruct.2019.111837.
- Guo, Q., Yao, W., Li, W. and Gupta, N. (2021), "Constitutive models for the structural analysis of composite materials for the finite element analysis: a review of recent practices", Compos. Struct., 260, 113267. https://doi.org/10.1016/j.compstruct.2020.113267.
- Huang, Y. (2020b), "Bending and free vibrational analysis of bi-directional functionally graded beams with circular cross-section", Appl. Math. Mech.-Engl. Ed., 41, 1497-1516. https://doi.org/10.1007/s10483-020-2670-6.
- Huang, Y. and Ouyang, Z.Y. (2020a), "Exact solution for bending analysis of two-directional functionally graded Timoshenko beams", Arch. Appl. Mech., 90, 1005-1023. https://doi.org/10.1007/s00419-019-01655-5.
- Huynh, T.A., Lieu, X.Q. and Lee, J. (2017), "NURBS-based modeling of bidirectional functionally graded Timoshenko beams for free vibration problem", Compos. Struct., 160, 117890. https://doi.org/10.1016/j.compstruct.2016.10.076.
- Kar, U.K. and Srinivas, J. (2023), "Dynamic analysis and identification of bi-directional functionally graded elastically supported cracked microbeam subjected to thermal shock loads", Eur. J. Mech.-A/Solid., 99, 104930. https://doi.org/10.1016/j.euromechsol.2023.104930.
- Karamanli, A. (2018), "Free vibration analysis of two directional functionally graded beams using a third order shear deformation theory", Compos. Struct., 189, 127-136. https://doi.org/10.1016/j.compstruct.2018.01.060.
- Karamanli, A., Vo, T.P. and Civalek, O. (2023), "Higher order finite element models for transient analysis of strain gradient functionally graded microplates", Eur. J. Mech.-A/Solid., 99, 104933. https://doi.org/10.1016/j.euromechsol.2023.104933.
- Lal, R. and Dangi, C. (2019), "Thermomechanical vibration of bidirectional functionally graded non-uniform Timoshenko nanobeam using nonlocal elasticity theory", Compos. Part B: Eng., 172, 724-742. https://doi.org/10.1016/j.compositesb.2019.05.076.
- Le, C.I., Le, N.A.T. and Nguyen, D.K. (2020), "Free vibration and buckling of bidirectional functionally graded sandwich beams using an enriched third-order shear deformation beam element", Compos. Struct., 261, 113309. https://doi.org/10.1016/j.compstruct.2020.113309.
- Madenci, E. (2021), "Free vibration and static analyses of metal-ceramic FG beams via high-order variational MFEM", Steel Compos. Struct., 39(5), 493-509. https://doi.org/10.12989/scs.2021.39.5.493.
- Madenci, E. and Ozutok, A. (2020), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97-108. http://doi.org/10.12989/sem.2020.73.1.097.
- Meksi, A., Benyoucef, S., Sekkal, M., Bouiadjra, R.B., Selim, M.M., Tounsi, A. and Hussain, M. (2021), "Influence of micromechanical models on the bending response of bidirectional FG beams under linear, uniform, exponential and sinusoidal distributed loading", Steel. Compos. Struct., 39(2), 215-228. https://doi.org/10.12989/scs.2021.39.2.215.
- Mesbah, A., Belabed, Z., Tounsi, A., Ghazwani, M.H., Alnujaie, A. and Aldosari, S.M. (2024), "Assessment of new Quasi-3D finite element model for free vibration and stability behaviors of thick functionally graded beams.", J. Vib. Eng. Technol., 12, 2231-2247. https://doi.org/10.1007/s42417-023-00976-8.
- Mohammadian, M. (2021), "Nonlinear free vibration of damped and undamped bi-directional functionally graded beams using a cubic-quintic nonlinear model", Compos. Struct., 255, 112866. https://doi.org/10.1016/j.compstruct.2020.112866.
- Mousavi, M.A., Sadeghi-Nik, A., Bahari, A., Jin, C., Ahmed, R., Ozbakkaloglu, T. and de Brito, J. (2021), "Strength optimization of cementitious composites reinforced by carbon nanotubes and titania nanoparticles", Constr. Build. Mater., 303(124), 510. https://doi.org/10.1016/j.conbuildmat.2021.124510.
- Nejad, M.Z., Hadi, A. and Farajpour, A. (2017), "Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials", Struct. Eng. Mech., 63(2), 161-169. https://doi.org/10.12989/sem.2017.63.2.161.
- Nejad, M.Z., Hadi, A., Omidvari, A. and Rastgoo, A. (2018), "Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's nonlocal elasticity theory", Struct. Eng. Mech., 67(4), 417-425. https://doi.org/10.12989/sem.2018.67.4.417.
- Nguyen, D.K., Vu, A.N.T., Pham, V.N. and Truong, T.T. (2022), "Vibration of a three-phase bidirectional functionally graded sandwich beam carrying a moving mass using an enriched beam element", Eng. Comput., 38, 4629-4650. https://doi.org/10.1007/s00366-021-01496-3.
- Ohab-Yazdi, S.M.K. and Kadkhodayan, M. (2021), "Free vibration of bi-directional functionally graded imperfect nanobeams under rotational velocity", Aerosp. Sci. Technol., 119, 107210. https://doi.org/10.1016/j.ast.2021.107210.
- Rajasekaran, S. and Khaniki, H.B. (2018), "Free vibration analysis of bi-directional functionally graded single/multi-cracked beams", Int. J. Mech. Sci., 144, 341-356. https://doi.org/10.1016/j.ijmecsci.2018.06.004.
- Rajasekaran, S. and Khaniki, H.B. (2019), "Bi-directional functionally graded thin-walled non-prismatic Euler beams of generic open/closed cross section Part II: Static, stability and free vibration studies", Thin Wall. Struct., 141, 646-674. https://doi.org/10.1016/j.tws.2019.02.005.
- Selmi, A. (2021), "Free vibration of bi-dimensional functionally graded simply supported beams", Adv. Concrete Constr., 12(3), 195-205. https://doi.org/10.12989/acc.2021.12.3.195.
- Sharma, P. and Khinchi, A. (2023), "Comparative analysis of the behavior of Bi-Directional Functionally Graded Beams: Numerical and parametric study", Int. J. Interact. Des. Manuf., 1-12. https://doi.org/10.1007/s12008-022-01191-7.
- Simsek, M. (2015), "Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions", Compos. Struct., 133, 968978. https://doi.org/10.1016/j.compstruct.2015.08.021.
- Tang, Y. and Yang, T. (2018), "Bi-directional functionally graded nanotubes: Fluid conveying dynamics", J. Appl. Mech., 10(04), 1850041. https://doi.org/10.1142/S1758825118500412.
- Tang, Y., Lv, X. and Yang, T. (2019), "Bi-directional functionally graded beams: asymmetric modes and nonlinear free vibration", Compos. Part B: Eng., 156, 319-331. https://doi.org/10.1016/j.compositesb.2018.08.140.
- Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete, 26(1), 53-62. https://doi.org/10.12989/cac.2020.26.1.053.
- Turan, M. (2022) "Bending analysis of two-directional functionally graded beams using trigonometric series functions", Arch. Appl. Mech., 92, 1841-1858. https://doi.org/10.1007/s00419-022-02152-y.
- Turan, M. and Adiyaman, G. (2023), "Free vibration and buckling analysis of porous two-directional functionally graded beams using a higher-order finite element model", J. Vib. Eng. Technol., 1-20. https://doi.org/10.1007/s42417-023-00898-5.
- Viet, N.V., Zaki, W. and Wang, Q. (2020), "Free vibration characteristics of sectioned unidirectional/bidirectional functionally graded material cantilever beams based on finite element analysis", J. Appl. Math. Mech., 41, 1787-1804. https://doi.org/10.1007/s10483-020-2664-8.
- Vu, A.N.T., Le, N.A.T. and Nguyen, D.K. (2021), "Dynamic behaviour of bidirectional functionally graded sandwich beams under a moving mass with partial foundation supporting effect", Acta Mechanica, 232, 2853-2875. https://doi.org/10.1007/s00707-021-02948-z.
- Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2021a), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27(3), 199-210. https://doi.org/10.12989/cac.2021.27.3.199.
- Yaylaci, M., Yayli, M., Uzun Yaylaci, E., Olmez, H. and Birinci, A. (2021b), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585.
- Zhao, L., Chen, W.Q. and Lu, C.F. (2012), "Symplectic elasticity for bi-directional functionally graded materials", Mech. Mater., 54, 32-42. https://doi.org/10.1016/j.mechmat.2012.06.001.
- Zhao, L., Zhu, J. and Wen, X.D. (2016), "Exact analysis of bi-directional functionally graded beams with arbitrary boundary conditions via the symplectic approach", Struct. Eng. Mech., 59(1), 101-122. https://doi.org/10.12989/sem.2016.59.1.101.
- Zhao, S., Zhao, Z., Yang, Z., Ke, L.L., Kitipornchai, S. and Yang, J. (2020), "Functionally graded graphene reinforced composite structures: A review", Eng. Struct., 210, 110339. https://doi.org/10.1016/j.engstruct.2020.110339.
- Zhou, J., Moradi, Z., Safa, M. and Khadimallah, M.A. (2022), "Intelligent modeling to investigate the stability of a two-dimensional functionally graded porosity-dependent nanobeams", Comput. Concrete, 30(2), 85-97. https://doi.org/10.12989/cac.2022.30.2.085.