DOI QR코드

DOI QR Code

Isolation and Identification of Adventitious Root Formation Inducing Substances from Cortex of cinnamomum cassia J.Presl

육계(Cortex of Cinnamomum cassia J.Presl) 추출물로부터 부정근 형성 유도물질 분리 및 동정

  • Joo Ho Yeo (Department of Medicinal Plant Resources, Andong National University) ;
  • Jeong Kyu Baek (Bubu Oriental Medical Clinic) ;
  • Jee Sung Park (Korea Plants Environment Research) ;
  • Kun Woo Kim (Department of Medicinal Plant Resources, Andong National University)
  • 여주호 (국립안동대학교 생약자원학과) ;
  • 백정규 (부부한의원) ;
  • 박지성 ((주)한국식물환경연구소) ;
  • 김건우 (국립안동대학교 생약자원학과)
  • Received : 2023.09.17
  • Accepted : 2023.11.07
  • Published : 2024.02.01

Abstract

In this study, as a result of exploring the physiological activity of plants useful for agriculture on various plant resources, it was possible to confirm an activity similar to auxin that promotes plant rooting in methanol extract of Cinnamon Bark (cortex of Cinnamomum cassia J.Presl). After separating the active body by applying column chromatography and HPLC to the CHCl3 active fraction obtained by solvent extraction for each polarity from the methanol extract of cinnamon bark, cinnamyl alcohol was identified through GC/MS analysis. By bioassay using cinnamyl alcohol standard and the active fraction separated and purified from the methanol extract of cinnamon bark, the rooting rate of mung bean seedlings of the cinnamyl alcohol standard was 290% compared with the untreated control at 134.2 ㎍/mL concentration, and the adventitious root formation activity similar to the rooting rate (268.6%; 100 ㎍/mL) of the active fraction was shown. In conclusion, it is believed that cinnamyl alcohol contained in methanol extract of Cinnamon Bark is the main compound that induces adventitious root formation in mung bean.

본 연구에서 육계 추출물로부터 cinnamyl alcohol을 분리·정제하였다. 연구 결과, H3 분획100 ㎍/mL에서 부정근 형성율이 286.6%였으며, 표준품 cinnamyl alcohol 1 mM (134.2 ㎍/mL)의 형성율이 290%로 유사한 결과를 나타내었다. 따라서 육계 methanol 추출물에 함유되어있는 cinnamyl alcohol이 녹두의 부정근 형성을 유도하는 주된 화합물일 것으로 판단된다. 육계에서 동정한 cinnamyl alcohol은 현재 식품첨가제 및 향료로써 사용되고 있으므로 안전성이 이미 보장되어 있으며, 한약재로써 사용된 육계 잔류물을 활용하여 부정근 형성 유도물질을 추출한다면비용적인 측면에서 또한 긍정적인 요인으로 작용할 것으로 판단된다. 따라서 육계는 유기농 농자재로써 충분히 사용 가능할 뿐만 아니라 신규 천연 식물생장조절제의 개발용 소재로서도 활용 가능할 것으로 사료된다.

Keywords

References

  1. Api, A.M., D.S. Belsito, D. Biserta, Botelho, M. Bruze, Jr Burton, J. Buschmann, M.A. Cancellieri, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, A.D. Fryer, S. Gadhia, L. Jones, K. Joshi, A. Lapczynski, M. Lavelle, D.C. Liebler, M. Na, D.O' Brien, A. Patel, T.M. Penning, G. Ritacco, F. Rodriguez-Ropero, J. Romine, N. Sadekar, D. Salvito, T.W. Schultz, F. Siddiqi, I.G. Sipes, G. Sullivan, Y. Thakkar, Y. Tokura and S. Tsang. 2020. RIFM fragrance ingredient safety assessment, cinnamyl alcohol, CAS Registry Number 104-54-1. Food Chem. Toxicol. 141:111337.
  2. Bagni, N., B. Malucelli and P. Torrigiani. 1980. Polyamines, storage substances and abscisic acid-like inhibitors during dormancy and very early activation of Helianthus tuberosus tuber tissues. Physiol. Plant. 49(4):341-345. https://doi.org/10.1111/j.1399-3054.1980.tb03313.x
  3. Choi, J., K.T. Lee, H. Ka, W.T. Jung, H.J. Jung and H.J. Park. 2001. Constituents of the essential oil of the Cinnamomum cassia stem bark and the biological properties. Arch. Pharm. Res. 24(5):418-423. https://doi.org/10.1007/BF02975187
  4. Choi, Y.H. 1982. Phytonematology, Hyang-moon-sa, Korea. pp. 58-69.
  5. Evans, M.L., H. Ishikawa and M.A. Estelle. 1994. Responses of Arabidopsis roots to auxin studied with high temporal resolution: comparison of wild type and auxin-response mutants. Planta. 194(2):215-222. https://doi.org/10.1007/BF00196390
  6. Geiss, G., L. Gutierrez and C. Bellini. 2009. Adventitious root formation: New insights and perspectives. Annu. Plant Rev. Online. 37:127-156. https://doi.org/10.1002/9781444310023.ch5
  7. Guilfoyle, T.J. and J.L. Key. 1986. Auxin-regulated gene expression in higher plants. Crit. Rev. Plant Sci. 4(3):247-276. https://doi.org/10.1080/07352688609382226
  8. Hess, C.E. 1961. Physiology of root initiation in easy-and difficult-to-root cuttings. The Hormolog. 3:3-6.
  9. Hyun, Y.H., J. Choi and W.S. Shin. 2021. Removal of 2, 4-D by an Fe (II)/persulfate/electrochemical oxidation process. J. Soil Groundwater Environ. 26(1):45-53.
  10. Jaafarzadeh, N., F. Ghanbari and A. Zahedi. 2018. Coupling electrooxidation and oxone for degradation of 2, 4-Dichlorophenoxyacetic acid (2, 4-D) from aqueous solutions. J. Water Process. Eng. 22:203-209. https://doi.org/10.1016/j.jwpe.2018.01.020
  11. Kashiwada, Y.,T. Nohara, T. Tomimatsu and I. Nishioka. 1981. Constituents of cinnamomi cortex. IV. Structures of cinncassiols C1 glucoside, C2 and C3. Chem. Pharm. Bull. 29(9):2686-2688. https://doi.org/10.1248/cpb.29.2686
  12. Lebuhn, M., T. Heulin and A. Hartmann. 1997. Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiol. Ecol. 22(4):325-334. https://doi.org/10.1111/j.1574-6941.1997.tb00384.x
  13. Lee, E. 2015. Effect of cinnamon extract on the inflammatory response in the LPS-shock rat. Korean J. Plant Res. 28(3):333-340. https://doi.org/10.7732/kjpr.2015.28.3.333
  14. Lee, J.D., H.B. Hyun, H. Hyeon, E. Jang, M.H. Ko, W.J. Yoon, Y.M. Ham, Y.H. Jung, H. Choi, E.G.O and D. Oh. 2022. Mass proliferation of Hibiscus hamabo adventitious root in an airlift bioreactor, and the antioxidant and whitening activity of the extract. Korean J. Plant Res. 35(4):435-444.
  15. Letizia, C.S., J. Cocchiara, J. Lalko, A. Lapczynski and A.M. Api. 2005. Fragrance material review on cinnamyl alcohol. Food Chem. Toxicol. 43(6):837-866. https://doi.org/10.1016/j.fct.2004.09.012
  16. Lin, C.C., S.J. Wu, C.H. Chang and L.T. Ng. 2003. Antioxidant activity of Cinnamomum cassia. Phytother. Res. 17(7):726-730. https://doi.org/10.1002/ptr.1190
  17. Lockwood, G.B. 1979. The major constituents of the essential oils of Cinnamomum cassia Blume growing in Nigeria. Planta Med. 36(8):380-381. https://doi.org/10.1055/s-0028-1097286
  18. Loomis, D., K. Guyton, Y. Grosse, F. El Ghissasi, V. Bouvard, L. Benbrahim-Tallaa, G. Neela, M. Heidi and S. Kurt. 2015. International agency for research on cancer monograph working group. Carcinogenicity of lindane, DDT, and 2, 4-dichlorophenoxyacetic acid. Lancet. Oncol. 16(8):891-892. https://doi.org/10.1016/S1470-2045(15)00081-9
  19. Mattia, A. and G.I. Sipes. 2001. Cinnamyl alcohol and related flavouring agents. Safety evaluation of certain food additives and contaminants. WHO Food AD. 46:994-1010.
  20. Morimoto, S., G.I. Nonaka and I. Nishioka. 1986a. Tannins and related compounds. XXXVIII.: Isolation and characterization of flavan-3-ol glucosides and procyanidin oligomers from Cassia bark: Cinnamomum cassia BLUME. Chem. Pharm. Bull. 34(2):633-642. https://doi.org/10.1248/cpb.34.633
  21. Morimoto, S., G.I. Nonaka and I. Nishioka. 1986b. Tannins and related compounds. XXXIX.: Procyanidin C-glucosides and an acylated flavan3-ol glucoside from the barks of Cinnamomum cassia BLUME and C. obtusifolium NEES. Chem. Pharm. Bull. 34(2):643-649. https://doi.org/10.1248/cpb.34.643
  22. Nohara, T., I. Nishioka, N. Tokubuchi, K. Miyahara and T. Kawasaki. 1980a. Cinncassiol C1, a novel type of diterpene from cinnamomi cortex. Chem. Pharm. Bull. 28(6):1969-1970. https://doi.org/10.1248/cpb.28.1969
  23. Nohara, T., N. Tokubuchi, M. Kuroiwa and I. Nishioka. 1980b. The constituents of cinnamomi cortex. III. Structures of cinncassiol B and its glucoside. Chem. Pharm. Bull. 28(9):2682-2686. https://doi.org/10.1248/cpb.28.2682
  24. Nohara, T., Y. Kashiwada and I. Nishioka. 1985. Cinncassiol E, a diterpene from the bark of Cinnamomum cassia. Phytochemistry 24(8):1849-1850. https://doi.org/10.1016/S0031-9422(00)82569-8
  25. Nohara, T., Y. Kashiwada, K. Murakami, T. Tomimatsu, M. Kido, A. Yagi and I. Nishioka. 1981. Constituents of cinnamomi cortex. V. Structures of five novel diterpenes, cinncassiols D1, D1 glucoside, D2, D2 glucoside and D3. Chem. Pharm. Bull. 29(9):2451-2459. https://doi.org/10.1248/cpb.29.2451
  26. Nohara, T., Y. Kashiwada, T. Tomimatsu and I. Nishioka. 1982. Two novel diterpenes from bark of Cinnamomum cassia. Phytochemistry 21(8):2130-2132. https://doi.org/10.1016/0031-9422(82)83066-5
  27. Ooi, L.S., Y. Li, S.L. Kam, H. Wang, E.Y. Wong and V.E. Ooi. 2006. Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herb Cinnamomum cassia Blume. Am. J. Chinese Med. 34(03):511-522. https://doi.org/10.1142/S0192415X06004041
  28. Sagara, K., T. Oshima, T. Yoshida, T. Yu-Yi, Z. Guande and C. Yu-Heng. 1987. Determination of Cinnamomi cortex by high-performance liquid chromatography. J. Chromatogr. A. 409:365-370. https://doi.org/10.1016/S0021-9673(01)86814-X
  29. Shiraga, Y., K. Okano, T. Akira, C. Fukaya, K. Yokoyama, S. Tanaka, Fukui H. and M. Tabata. 1988. Structures of potent antiulcerogenic compounds from Cinnamomum cassia. Tetrahedron 44(15):4703-4711. https://doi.org/10.1016/S0040-4020(01)86173-1
  30. Verspohl, E.J., K. Bauer and E. Neddermann. 2005. Antidiabetic effect of Cinnamomum cassia and Cinnamomum zeylanicum in vivo and in vitro. Phytother. Res. 19(3):203-206. https://doi.org/10.1002/ptr.1643
  31. Yagi, A., N. Tokubuchi, T. Nohara, G. Nonaka, I. Nishioka and A. Koda. 1980. The constituents of Cinnamomi cortex. I. structures of cinncassiol A and its glucoside. Chem. and Pharm. Bull. 28(5):1432-1436. https://doi.org/10.1248/cpb.28.1432