DOI QR코드

DOI QR Code

Synthesis of Nanorod g-C3N3/Ag3PO4 Composites and Photocatalytic Activity for Removing Organic Dyes under Visible Light Condition

  • Se Hwan Park (Department of Convergence Science, Graduate School, Sahmyook University) ;
  • Jeong Won Ko (Department of Animal Resources Science, Sahmyook University) ;
  • Weon Bae Ko (Department of Convergence Science, Graduate School, Sahmyook University)
  • Received : 2024.01.09
  • Accepted : 2024.02.21
  • Published : 2024.03.31

Abstract

Nanorod graphitic carbon nitride (g-C3N4) was synthesized by reacting melamine (C3H6N6) with trithiocyanuric acid (C3H3N3S3) in distilled water for 10 h at room temperature. The resulting mixture was calcined at 550℃ for 2 h in an electric furnace under an air atmosphere. Nanorod g-C3N4/Ag3PO4 composites were prepared by adding nanorod graphitic carbon nitride (g-C3N4) powder, silver nitrate (AgNO3), ammonia (NH3·H2O, 25.0-30.0%), and sodium hydrogen phosphate (Na3HPO4) to distilled water. The samples were characterized via X-ray diffraction, scanning electron microscopy, and Fourier-transform infrared spectroscopy. The photocatalytic activities of the nanorod g-C3N4/Ag3PO4 composites were demonstrated via the degradation of organic dyes, such as methylene blue and methyl orange, under blue light-emitting diode irradiation and evaluated using UV-vis spectrophotometry.

Keywords

Acknowledgement

This study was supported by Sahmyook University research funding in Korea.

References

  1. X. Liu, J. Zhang, Y. Dong, H. Li, Y. Xia, and H. Wang, "A facile approach for the synthesis of Z-scheme photocatalyst ZIF-8/g-C3N4 with highly enhanced photocatalytic activity under simulated sunlight", New J. Chem., 42, 12180 (2018). 
  2. E. Repo, S. Rengaraj, S. Pulkka, E. Castangnoli, S. Suihkonen, M. Sopanen, and M. Sillanpaa, "Photocatalytic degradation of dyes by CdS microspheres under near UV and blue LED radiation", Sep. Purif. Technol., 120, 206 (2013). 
  3. T. Soltani and M. H. Entezari, "Photolysis and photocatalysis of methylene blue by ferrite bismuth nanoparticles under sunlight irradiation", J. Mol. Catal. A Chem., 377, 197 (2013). 
  4. A. Bhatnagar and A. K. Jain, "A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water", J. Colloid Interface Sci., 281, 49 (2005). 
  5. R. Guan, J. Li, J. Zhang, D. Wang, H. Zhai, and D. Sun, "Photocatalytic performance and mechanistic research of ZnO/g-C3N4 on degradation of methyl orange", ACS Omega, 4, 20742 (2019). 
  6. J. Li, J. W. Ko, and W. B. Ko, "Photocatalytic Degradation of Organic Dyes using CdSe-Mn-C60 Nanocomposites", Elast. Compos., 57, 181 (2022). 
  7. E. K. Lee and S. Y. Han, "Synthesis and Characterization of the Ag-doped TiO2", Elast. Compos., 57, 1 (2022). 
  8. U. Sulaeman, E. Yunari, P. Isanti, S. Yin, and T. Sato, "Synthesis of Bi2O3/Ag3Po4 Composites and their Photocatalytic Activities under Visible Light Irradiation", Adv. Mat. Res., 1112, 163 (2015). 
  9. C. Song, C. Shang, S. Li, W. Wang, M. Qi, J. Chen, and H. Liu, "Efficient visible-light-responsive Ag3PO4/g-C3N4/hydroxyapatite photocatalyst (from oyster Shells) for the degradation of methylene blue: preparation", Catalysts, 12, 115 (2022). 
  10. W. Zhang, X. Xiao, L. Zheng, and C. Wan, "Fabrication of TiO2/MoS2@zeolite photocatalyst and its photocatalytic activity for degradation of methyl orange under visible light", Appl. Surf. Sci., 358, 468 (2015). 
  11. H. Li, J. Liu, W. Hou, N. Du, R. Zhang, and X. Tao, "Synthesis and characterization of g-C3N4/Bi2MoO6 heterojunctions with enhanced visible light photocatalytic activity", Appl. Catal. B, 160, 89 (2014). 
  12. T. Li, L. Zhao, Y. He, J. Cai, M. Luo, and J. Lin, "Synthesis of g-C3N4/SmVO4 composite photocatalyst with improved visible light photocatalytic activities in RhB degradation", Appl. Catal. B, 129, 255 (2013). 
  13. D. Wang, J. Liu, M. Xu, J. Gao, D. Yang, B. Yu, W. Jiang, and H. Li, "Optimized design of visible light-driven g-C3N4 nanorod/Ag3PO4 Z-scheme heterojunction with enhanced interfacial charge separation and photocatalytic activity", J. Mater. Sci. Mater. Electron., 33, 2415 (2022). 
  14. S. Kumara, S. Ta, A. Baruahb, and V. Shankera, "Synthesis of a novel and stable g-C3N4-Ag3PO4 hybrid nanocomposite photocatalyst and study of the photocatalytic activity under visible light irradiation", J. Mater. Chem. A, 1, 5333 (2013). 
  15. Z. Mo, X. She, Y. Li, L. Liu, L. Huang, Z. Chen, Q. Zhang, H. Xu, and H. Li, "Synthesis of g-C3N4 at different temperatures for superior visible/UV photocatalytic performance and photoelectrochemical sensing of MB solution", RSC Adv., 5, 101552 (2015). 
  16. J. Wen, J. Xie, X. Chen, and X. Li, "A review on g-C3N4-based photocatalysts", Appl. Surf. Sci., 319, 72 (2017). 
  17. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, "A metal-free polymeric photocatalyst for hydrogen production from water under visible light", Nat. Mater., 8, 76 (2009). 
  18. B. Fahimirad, A. Asghari, and M. Rajabi, "Magnetic graphitic carbon nitride nanoparticles covalently modified with an ethylenediamine for dispersive solid-phase extraction of lead (II) and cadmium (II) prior to their quantitation by FAAS", Mikrochim Acta, 184, 3027 (2017). 
  19. P. H. Linh, P. Chung, N. Van Khien, V. T. Thu, T. N. Bach, L. T. Hang, N. M. Hung, and V. D. Lam, "A simple approach for controlling the morphology of g-C3N4 nanosheets with enhanced photocatalytic properties", Diam. Relat. Mater., 111, 108214 (2021). 
  20. W. Touati, M. Karmaoui, A. Bekka, M. F. Edelmannova, C. Furgeaud, A. Chakib, I. K. Allah, B. Figueiredo, J. A. Labrincha, R. Arenal, K. Koci and D. M. Tobaldi, "Photocatalytic hydrogen generation from a methanol-water mixture in the presence of g-C3N4 and graphene/g-C3N4", New J. Chem. 46, 20679 (2022). 
  21. X. Bai, L. Wang, R. Zong, and Y. Zhu, "Photocatalytic activity enhanced via g-C3N4 nanoplates to nanorods", J. Phys. Chem. C, 117, 9952 (2013). 
  22. Z. Zhu, W. Fan, Z. Liu, H. Dong, Y. Yan, and P. Huo, "Construction of an attapulgite intercalated mesoporous g-C3N4 with enhanced photocatalytic activity for antibiotic degradation", J. Photochem. Photobiol. A, 359, 102 (2018). 
  23. S. Chen, Y. Hu, S. Meng, and Fu. X, "Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3", Appl. Catal. B, 150, 564 (2014). 
  24. A. A. Elhakim, M. E. Kemary, M. M. Ibrahim, I. M. El-Mehasseb, and H. S. El-Sheshtawy, "Direct Z-scheme of WO3/GO decorated with silver nanoparticles for synergetic adsorption and photocatalytic activity for organic and inorganic water pollutants removal", Appl. Surf. Sci., 564, 150410 (2021). 
  25. L. Liu, Y. Qi, J. Lu, S. Lin, W. An, Y. Liang, and W. Cui, "A stable Ag3PO4@ g-C3N4 hybrid core@ shell composite with enhanced visible light photocatalytic degradation", Appl. Catal. B, 183, 133 (2016). 
  26. H. Zhai, T. Yan, P. Wang, Y. Yu, W. Li, J. You, and B. Huang, "Effect of chemical etching by ammonia solution on the microstructure and photocatalytic activity of Ag3PO4 photocatalyst", Appl. Catal. A Gen., 528, 104 (2016). 
  27. R. Tao, S. Yang, C. Shao, X. Li, X. Li, S. Liu, J. Zhang, and Y. Liu, "Reusable and Flexible g-C3N4/Ag3PO4/Polyacrylonitrile Heterojunction Nanofibers for Photocatalytic Dye Degradation and Oxygen Evolution", ACS Appl. Nano Mater., 2, 3081 (2019). 
  28. J. J. Liu, X. L. Fu, S. F. Chen, and Y. F. Zhu, "Electronic structure and optical properties of Ag3PO4 photocatalyst calculated by hybrid density functional method", Appl. Phys. Lett., 99, 191903 (2011). 
  29. D. Ayodhya and G. Veerabhadram, "Synthesis and characterization of g-C3N4 nanosheets decorated Ag2S composites for investigation of catalytic reduction of 4-nitrophenol, antioxidant and antimicrobial activities", J. Mol. Struct., 1186, 423 (2019). 
  30. F. Fina, S. K. Callear, G. M. Carins, and J. T. Irvine, "Structural investigation of graphitic carbon nitride via XRD and neutron diffraction", Chem. Mater., 27, 2612 (2015). 
  31. Y. Guo, L. Xiao, M. Zhang, Q. Li, and J. Yang "An oxygen-vacancy-rich Z-scheme g-C3N4/Pd/TiO2 heterostructure for enhanced visible light photocatalytic performance", Appl. Surf. Sci., 440, 432 (2018). 
  32. A. Amedlous, M. Majdoub, E. Amaterz, Z. Anfar, and A. Benlhachemi, "Synergistic effect of g-C3N4 nanosheets/Ag3-PO4 microcubes as efficient n-p-type heterostructure based photoanode for photoelectrocatalytic dye degradation", J. Photochem. Photobiol. A, 409, 113127 (2021). 
  33. Y. Song, Y. Lei, H. Xu, C. Wang, J. Yan, H. Zhao, Y. Xu, J. Xia, S. Yin, and H. Li, "Synthesis of few-layer MoS2 nanosheet-loaded Ag3PO4 for enhanced photocatalytic activity", Dalton Trans., 44, 3057 (2015). 
  34. W. Teng, X. Tan, X. Li, and Y. Tang, "Novel Ag3PO4/MoO3 p-n heterojunction with enhanced photocatalytic activity and stability under visible light irradiation", Appl. Surf. Sci., 409, 250 (2017). 
  35. M. E. Taheri, A. Petala, Z. Frontistis, D. Mantzavinos, and D. I. Kondarides, "Fast photocatalytic degradation of bisphenol A by Ag3PO4/TiO2 composites under solar radiation" Catal. Today, 280, 99 (2017). 
  36. X. Wang, J. Song, Y. Lu, W. Zhu, and G. Hu, "Development of a Z-scheme Ag/Ag2WO4/g-C3N4 photocatalyst for RhB fast degradation assisted with H2O2", J. Mater. Sci. Mater. Electron., 32, 2061 (2021). 
  37. W. Wang, Q. Niu, G. Zeng, C. Zhang, D. Huang, B. Shao, C. Zhou, Y. Yang, Y. Liu, H. Guo, W. Xiong, L. Lei, S. Liu, H. Yi, S. Chen, and X. Tang, "1D porous tubular g-C3N4 capture black phosphorus quantum dots as 1D/0D metal-free photocatalysts for oxytetracycline hydrochloride degradation and hexavalent chromium reduction", Appl. Catal., 273, 119051 (2020). 
  38. B. Zhu, P. Xia, Y. Li, W. Ho, and J. Yu, "Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst", Appl. Surf. Sci., 391, 175 (2017). 
  39. W. Zhang, L. Zhou, J. Shi, and H. Deng, "Synthesis of Ag3-PO4/G-C3N4 composite with enhanced photocatalytic performance for the photodegradation of diclofenac under visible light irradiation", Catalysts, 8, 45 (2018). 
  40. Q. Liang, W. Ma, Y. Shi, Z. Li, and X. Yang, "Hierarchical Ag3PO4 porous microcubes with enhanced photocatalytic properties synthesized with the assistance of trisodium citrate", CrystEngComm, 14, 2966 (2012). 
  41. R. K. Santos, T. A. Martins, G. N. Silva, M. V. Conceicao, I. C. Nogueira, E. Longo, and G. Botelho, "Ag3PO4/NiO composites with enhanced photocatalytic activity under visible light", ACS Omega, 5, 21651 (2020). 
  42. V. A. Tran, T. P. Nguyen, I. T. Kim, S.-W. Lee, and C. T. Nguyen, "Excellent photocatalytic activity of ternary Ag@WO3@rGO nanocomposites under solar simulation irradiation", J. Sci.: Adv. Mater. Devices, 6, 108 (2021). 
  43. K. Dai, L. Lu, C. Liang, Q. Liu, and G. Zhu, "Heterojunction of facet coupled g-C3N4/surface-fluorinated TiO2 nanosheets for organic pollutants degradation under visible LED light irradiation", Appl. Catal. B, 156, 331 (2014). 
  44. A. Dana and S. Sheibani, "CNTs-copper oxide nanocomposite photocatalyst with high visible light degradation efficiency", Adv. Powder Technol., 32, 3760 (2021). 
  45. P. He, L. Song, S. Zhang, X. Wu, and Q. Wei, "Synthesis of g-C3N4/Ag3PO4 heterojunction with enhanced photocatalytic performance", Mater. Res. Bull., 51, 432 (2014). 
  46. D. Jiang, J. Zhu, M. Chen, and J. Xie, "Highly efficient heterojunction photocatalyst based on nanoporous g-C3N44 sheets modified by Ag3PO4 nanoparticles: Synthesis and enhanced photocatalytic activity", J. Colloid Interface Sci., 417, 115 (2014).