DOI QR코드

DOI QR Code

Investigating meso-scale low-temperature fracture mechanisms of recycled asphalt concrete (RAC) via peridynamics

  • Yuanjie Xiao (School of Civil Engineering, Central South University) ;
  • Ke Hou (School of Civil Engineering, Central South University) ;
  • Wenjun Hua (School of Civil Engineering, Central South University) ;
  • Zehan Shen (School of Civil Engineering, Central South University) ;
  • Yuliang Chen (Hunan Communications Research Institute Co., Ltd.) ;
  • Fanwei Meng (Hunan Communications Research Institute Co., Ltd.) ;
  • Zuen Zheng (Hunan Communications Research Institute Co., Ltd.)
  • Received : 2023.11.03
  • Accepted : 2024.03.12
  • Published : 2024.05.25

Abstract

The increase of reclaimed asphalt pavement (RAP) content in recycled asphalt concrete (RAC) is accompanied by the degradation of low-temperature cracking resistance, which has become an obstacle to the development of RAC. This paper aims to reveal the meso-scale mechanisms of the low-temperature fracture behavior of RAC and provide a theoretical basis for the economical recycling of RAP. For this purpose, micromechanical heterogeneous peridynamic model of RAC was established and validated by comparing three-point bending (TPB) test results against corresponding numerical simulation results of RAC with 50% RAP content. Furthermore, the models with different aggregate shapes (i.e., average aggregates circularity (${\bar{C_r}}=1.00$, 0.75, and 0.50) and RAP content (i.e., 0%, 15%, 30%, 50%, 75%, and 100%) were constructed to investigate the effect of aggregate shape and RAP content on the low-temperature cracking resistance. The results show that peridynamic models can accurately simulate the low-temperature fracture behavior of RAC, with only 2.9% and 13.9% differences from the TPB test in flexural strength and failure strain, respectively. On the meso-scale, the damage in the RAC is mainly controlled by horizontal tensile stress and the stress concentration appears in the interface transition zone (ITZ). Aggregate shape has a significant effect on the low-temperature fracture resistance, i.e., higher aggregate circularity leads to better low-temperature performance. The large number of microcracks generated during the damage evolution process for the peridynamic model with circular aggregates contributes to slowing down the fracture, whereas the severe stress concentration at the corners leads to the fracture of the aggregates with low circularity under lower stress levels. The effect of RAP content below 30% or above 50% is not significant, but a substantial reduction (16.9% in flexural strength and 16.4% in failure strain) is observed between the RAP content of 30% and 50%. This reduction is mainly attributed to the fact that the damage in the ITZ region transfers significantly to the aggregates, especially the RAP aggregates, when the RAP content ranges from 30% to 50%.

Keywords

Acknowledgement

This work was jointly supported by the Science Fund for Distinguished Young Scholars of Hunan Province, China (2024JJ2073), the National Natural Science Foundation of China (52178443), and the National Key R&D Program of China (2019YFC1904704). The computing resources provided by the High-Performance Computing Center of Central South University are gratefully acknowledged.

References

  1. Al-Qadi, I.L., Elseifi, M. and Carpenter, S.H. (2007), "Reclaimed asphalt pavement-A literature review", FHWA-ICT-07-001; Illinois Centre of Transportation, Springfield, IL, USA.
  2. Anthonissen, J., Van den bergh, W. and Braet, J. (2016), "Review and environmental impact assessment of green technologies for base courses in bituminous pavements", Environ. Impact Assess. Rev., 60, 139-147. https://doi.org/10.1016/j.eiar.2016.04.005.
  3. Attahiru, Y.B., Aziz, Md.M.A., Kassim, K.A., Shahid, S., Wan Abu Bakar, W.A., NSashruddin, T.F., Rahman, F.A. and Ahamed, M.I. (2019), "A review on green economy and development of green roads and highways using carbon neutral materials", Renewab. Sustainab. Energy Rev., 101, 600-613. https://doi.org/10.1016/j.rser.2018.11.036.
  4. Ayatollahi, M.R., Pirmohammad, S. and Sedighiani, K. (2014), "Three-dimensional finite element modeling of a transverse top-down crack in asphalt concrete", Comput. Concrete, 13, 569-585. https://doi.org/10.12989/cac.2014.13.4.569.
  5. Baek, J. and Al-Qadi, I.L. (2006), "Finite element method modeling of reflective cracking initiation and propagation: Investigation of the effect of steel reinforcement interlayer on retarding reflective cracking in hot-mix asphalt overlay", Transp. Res. Rec., 1949, 32-42. https://doi.org/10.1177/0361198106194900104.
  6. Behnia, B., Dave, E.V., Ahmed, S., Buttlar, W.G. and Reis, H. (2011), "Effects of recycled asphalt pavement amounts on low-temperature cracking performance of asphalt mixtures using acoustic emissions", Transp. Res. Rec., 2208, 64-71. https://doi.org/10.3141/2208-09.
  7. Bobaru, F., Ha, Y. and Hu, W. (2010), "Numerical integration in peridynamics", The Selected Works of Javad Mehrmashhadi, University of Nebraska at Lincoln, Lincoln, NE, USA.
  8. Chen, Y., Chen, Z., Xiang, Q., Qin, W. and Yi, J. (2021), "Research on the influence of RAP and aged asphalt on the performance of plant-mixed hot recycled asphalt mixture and blended asphalt", Case Stud. Constr. Mater., 15, e00722. https://doi.org/10.1016/j.cscm.2021.e00722.
  9. Ding, X., Chen, L., Ma, T., Ma, H., Gu, L., Chen, T. and Ma, Y. (2019), "Laboratory investigation of the recycled asphalt concrete with stable crumb rubber asphalt binder", Constr. Build. Mater., 203, 552-557. https://doi.org/10.1016/j.conbuildmat.2019.01.114.
  10. Elkashef, M. and Williams, R.C. (2017), "Improving fatigue and low temperature performance of 100% RAP mixtures using a soybean-derived rejuvenator", Constr. Build. Mater., 151, 345-352. https://doi.org/10.1016/j.conbuildmat.2017.06.099.
  11. Elseifi, M.A., Mohammad, L.N., Ying, H. and Cooper, S. (2012a), "Modeling and evaluation of the cracking resistance of asphalt mixtures using the semi-circular bending test at intermediate temperatures", Road Mater. Pavement Des., 13, 124-139. https://doi.org/10.1080/14680629.2012.657035.
  12. Fallah, A.S., Giannakeas, I.N., Mella, R., Wenman, M.R., Safa, Y. and Bahai, H. (2020), "On the computational derivation of bond-based peridynamic stress tensor", J. Peridyn. Nonlocal Model., 2, 352-378. https://doi.org/10.1007/s42102-020-00036-9.
  13. Hartmann, P., Thoeni, K. and Rojek, J. (2023), "A generalised multi-scale peridynamics-DEM framework and its application to rigid-soft particle mixtures", Comput. Mech., 71, 107-126. https://doi.org/10.1007/s00466-022-02227-1.
  14. Hu, S., Zhou, F. and Walubita, L.F. (2009), "Development of a viscoelastic finite element tool for asphalt pavement low temperature cracking analysis", Road Mater. Pavement Des., 10, 833-858. https://doi.org/10.1080/14680629.2009.9690229.
  15. Huang, D., Lu, G. and Qiao, P. (2015), "An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis", Int. J. Mech. Sci., 94, 111-122. https://doi.org/10.1016/j.ijmecsci.2015.02.018.
  16. Islam, M.R., Vallejo, M.J. and Tarefder, R.A. (2017), "Crack propagation in hot mix asphalt overlay using extended finite-element model", J. Mater. Civil Eng., 29, 04016296. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001815.
  17. JTG E20-2011 (2011), Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering, Highway Research Institute of the Transportation Department, Beijing, China.
  18. Kilic, B. and Madenci, E. (2010), "An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory", Theoret. Appl. Fract. Mech., 53, 194-204. https://doi.org/10.1016/j.tafmec.2010.08.001.
  19. Le, Q.V. and Bobaru, F. (2018), "Surface corrections for peridynamic models in elasticity and fracture", Comput. Mech., 61, 499-518. https://doi.org/10.1007/s00466-017-1469-1.
  20. Li, W. and Guo, L. (2018), "Meso-fracture simulation of cracking process in concrete incorporating three-phase characteristics by peridynamic method", Constr. Build. Mater., 161, 665-675. https://doi.org/10.1016/j.conbuildmat.2017.12.002.
  21. Liu, W., Yan, K., Li, J.Q. and Yang, S. (2021), "Peridynamics-based simulation of semi-circular bending (SCB) testing", Constr. Build. Mater., 268, 121190. https://doi.org/10.1016/j.conbuildmat.2020.121190.
  22. Madenci, E. and Oterkus, E. (2014), Peridynamic Theory and Its Applications, Springer New York, New York, NY, USA.
  23. Moghaddam, T.B. and Baaj, H. (2016), "The use of rejuvenating agents in production of recycled hot mix asphalt: A systematic review", Constr. Build. Mater., 114, 805-816. https://doi.org/10.1016/j.conbuildmat.2016.04.015.
  24. Nian, T., Ge, J., Li, P., Guo, R., Li, J. and Wang, M. (2022), "Improved three-dimensional discrete modeling method and anti-cracking properties of asphalt mixture", Constr. Build. Mater., 321, 126405. https://doi.org/10.1016/j.conbuildmat.2022.126405.
  25. Pouranian, M.R. and Shishehbor, M. (2019), "Sustainability assessment of green asphalt mixtures: A review", Environ., 6, 73. https://doi.org/10.3390/environments6060073.
  26. Sanfilippo, D., Ghiassi, B. and Alexiadis, A. (2023), "Peridynamic modelling and simulation of asphalt at low and high temperature", Constr. Build. Mater., 367, 130170. https://doi.org/10.1016/j.conbuildmat.2022.130170.
  27. Shen, M., Shi, Z., Zhao, C., Zhong, X., Liu, B. and Shu, X. (2019), "2-D meso-scale complex fracture modeling of concrete with embedded cohesive elements", Comput. Concrete, 24, 207-222. https://doi.org/10.12989/cac.2019.24.3.207.
  28. Silling, S.A. (2000), "Reformulation of elasticity theory for discontinuities and long-range forces", J. Mech. Phys. Solid., 48, 175-209. https://doi.org/10.1016/S0022-5096(99)00029-0.
  29. Silling, S.A. and Askari, E. (2005), "A meshfree method based on the peridynamic model of solid mechanics", Comput. Struct., 83, 1526-1535. https://doi.org/10.1016/j.compstruc.2004.11.026.
  30. Tian, X., Zhang, R., Yang, Z., Chu, Y., Zhen, S. and Xv, Y. (2018), "Simulation of bending fracture process of asphalt mixture semicircular specimen with extended finite element method", Adv. Mater. Sci. Eng., 2018, e4081264. https://doi.org/10.1155/2018/4081264.
  31. Valdes, G., Perez-Jimenez, F., Miro, R., Martinez, A. and Botella, R. (2011), "Experimental study of recycled asphalt mixtures with high percentages of reclaimed asphalt pavement (RAP)", Constr. Build. Mater., 25, 1289-1297. https://doi.org/10.1016/j.conbuildmat.2010.09.016.
  32. Walraven, J.C. and Reinhardt, H.W. (1981), "Concrete mechanics. Part A: Theory and experiments on the mechanical behavior of cracks in plain and reinforced concrete subjected to shear loading", NASA STI/Recon Tech. Rep. N, 82, 25417.
  33. Wang, L. and Yang, X. (2022), "Analysis of optimal RAP content based on discrete element method", Adv. Mater. Sci. Eng., 2022, e2878848. https://doi.org/10.1155/2022/2878848.
  34. Xu, M., Le, J.L., Yan, T., Turos, M., Marasteanu, M. and Feng, D. (2022), "Investigation of fracture behavior of recycled asphalt mixtures using a discrete element computational model", Proceedings of the RILEM International Symposium on Bituminous Materials 2020, Lyon, France, December.
  35. Yao, H., Xu, M., Liu, J., Liu, Y., Ji, J. and You, Z. (2022), "Literature review on the discrete element method in asphalt mixtures", Front. Mater., 9, 879245. https://doi.org/10.3389/fmats.2022.879245.
  36. Zaumanis, M., Mallick, R.B. and Frank, R. (2013), "Evaluation of rejuvenator's effectiveness with conventional mix testing for 100% reclaimed asphalt pavement mixtures", Transp. Res. Rec., 2370, 17-25. https://doi.org/10.3141/2370-03.
  37. Zhu, J., Ma, T., Fan, J., Fang, Z., Chen, T. and Zhou, Y. (2020), "Experimental study of high modulus asphalt mixture containing reclaimed asphalt pavement", J. Clean. Prod., 263, 121447. https://doi.org/10.1016/j.jclepro.2020.121447.
  38. Zhu, X., Yuan, Y., Li, L., Du, Y. and Li, F. (2017), "Identification of interfacial transition zone in asphalt concrete based on nanoscale metrology techniques", Mater. Des., 129, 91-102. https://doi.org/10.1016/j.matdes.2017.05.015.